Education Research Current About VU Amsterdam NL
Login as
Prospective student Student Employee
Bachelor Master VU for Professionals
Exchange programme VU Amsterdam Summer School Honours programme VU-NT2 Semester in Amsterdam
PhD at VU Amsterdam Research highlights Prizes and distinctions
Research institutes Our scientists Research Impact Support Portal Creating impact
News Events calendar Woman at the top
Israël and Palestinian regions Culture on campus
Practical matters Mission and core values Entrepreneurship on VU Campus
Organisation Partnerships Alumni University Library Working at VU Amsterdam
Sorry! De informatie die je zoekt, is enkel beschikbaar in het Engels.
This programme is saved in My Study Choice.
Something went wrong with processing the request.
Something went wrong with processing the request.

AI better to be good! Radiologists tend to rely on AI for cancer diagnosis

Share
14 June 2023
The new study shows that radiologists’ decisions tend to follow AI suggestions. According to associate professor Mohammad Rezazade Mehrizi, the chance of making correct diagnoses is 78% when consulting correct AI suggestions, and the chance of making incorrect diagnoses is 72% when consulting incorrect AI decisions.

The new collaborative study of KIN researchers, Mohammad H. Rezazade Mehrizi, Ferdinand Mol, Marcel Peter, with medical professionals, Daniel Pinto Dos Santos, Erik Ranschaert, Ramin Shahidi, Mansoor Fatehi, Thomas Dratsch, investigates the various ways in which medical experts interact with AI and eventually make their own decisions. The study, published in Nature Scientific Reports, examines the effect of correct and incorrect algorithmic suggestions on the diagnosis performance of radiologists and how various measures — providing additional information to explain AI outcomes and forming critical attitudes towards AI — can affect this relation.

Two quasi-experimental studies explored how two factors can affect the decision-making process. In the first experiment, radiologists were provided with different explanation inputs, such as a heatmap or numerical attributes, in addition to AI suggestions. In the second experiment, radiologists were primed on different attitudes about AI by watching videos that highlighted both positive and negative facts about AI in medical settings.

After analyzing 2,760 decisions made by 92 radiologists examining 15 pairs of mammography images, the researchers concluded that radiologists' diagnoses followed both incorrect and correct AI suggestions, despite supplementing them with explanatory information and interventions to evoke a critical attitude.

Ideally, professionals must engage in “reflective practices” while using AI, especially in the medical context, since medical decisions are high stakes and carry strict legal liabilities.

Mehrizi notes that we must be critical — and less wishful — about the real effect of common measures such as offering explanation inputs or inducing critical attitudes, which are often assumed to trigger reflective engagement.

Read the full paper here.

Quick links

Homepage Culture on campus VU Sports Centre Dashboard

Study

Academic calendar Study guide Timetable Canvas

Featured

VUfonds VU Magazine Ad Valvas Digital accessibility

About VU

Contact us Working at VU Amsterdam Faculties Divisions
Privacy Disclaimer Veiligheid Webcolofon Cookies Webarchief

Copyright © 2025 - Vrije Universiteit Amsterdam