My background includes 10 years of academic research experience, at the crossroads of photophysics, nanophotonics, materials science, (bio)inorganic chemistry, heterogeneous catalysis, and nanotechnology. Highlights include the successful development of: (i) molecular photon upconversion in nanoscale drug carriers for light-activated anticancer therapy (PhD, Leiden), (ii) light-driven CO-releasing molecules and materials for medical applications, based on molecular photochemistry and triplet-energy transfer mechanisms (PD1, Jena), (iii) photoelectrochemical synthesis of catalytic plasmonic nanostructures (PD2, AMOLF), (iv) alternative plasmonic materials and nanostructures for plasmonic photochemistry and nanoscale heating (VENI PD, AMOLF & VU). I am currently leading an ambitious research program on plasmonic photothermal catalysis within the PhotoConversion Materials group, funded by VENI & NWO-XS grants.
My vision for the next 10 years is to (i) make meaningful contributions to the understanding of how we can leverage material, nanostructure, time dynamics, nanoscale energy flow, and heterogeneous interfacial processes for light-energy conversion technologies, and to (ii) apply this knowledge in the development of useful nanophotonic, material science, and photochemical technologies.