Education Research Current About VU Amsterdam NL
Login as
Prospective student Student Employee
Bachelor Master VU for Professionals
Exchange programme VU Amsterdam Summer School Honours programme VU-NT2 Semester in Amsterdam
PhD at VU Amsterdam Research highlights Prizes and distinctions
Research institutes Our scientists Research Impact Support Portal Creating impact
News Events calendar Woman at the top
Israël and Palestinian regions Culture on campus
Practical matters Mission and core values Entrepreneurship on VU Campus
Organisation Partnerships Alumni University Library Working at VU Amsterdam
Sorry! De informatie die je zoekt, is enkel beschikbaar in het Engels.
This programme is saved in My Study Choice.
Something went wrong with processing the request.
Something went wrong with processing the request.

Yue Li receives TAHRI best paper award

Share
20 March 2024
Yue Li receives TAHRI best paper award

Yue Li received Best Paper award at the 2024 International Symposium on Technological Advances in Human-Robot Interaction (TAHRI), held in Boulder, Colorado, USA on March 9-10, 2024. The title of this paper is "Single-Channel Robot Ego-Speech Filtering during Human-Robot Interaction". The authors are Yue Li, Koen Hindriks, and Florian Kunneman.

Paper summary:

In this paper, we study how well human speech can automatically be filtered when this overlaps with the voice and fan noise of a social robot, Pepper. We ultimately aim for an HRI scenario where the microphone can remain open when the robot is speaking, enabling a more natural turn-taking scheme where the human can interrupt the robot. To respond appropriately, the robot would need to understand what the interlocutor said in the overlapping part of the speech, which can be accomplished by target speech extraction (TSE). To investigate how well TSE can be accomplished in the context of the popular social robot Pepper, we set out to manufacture a datase composed of a mixture of recorded speech of Pepper itself, its fan noise (which is close to the microphones), and human speech as recorded by the Pepper microphone, in a room with low reverberation and high reverberation. Comparing a signal processing approach, with and without post-filtering, and a convolutional recurrent neural network (CRNN) approach to a state-of-the-art speaker identification-based TSE model, we found that the signal processing approach without post-filtering yielded the best performance in terms of Word Error Rate on the overlapping speech signals with low reverberation, while the CRNN approach is more robust for reverberation. These results show that estimating the human voice in overlapping speech with a robot is possible in real-life application, provided that the room reverberation is low and the human speech has a high volume or high pitch.

Quick links

Homepage Culture on campus VU Sports Centre Dashboard

Study

Academic calendar Study guide Timetable Canvas

Featured

VUfonds VU Magazine Ad Valvas Digital accessibility

About VU

Contact us Working at VU Amsterdam Faculties Divisions
Privacy Disclaimer Veiligheid Webcolofon Cookies Webarchief

Copyright © 2025 - Vrije Universiteit Amsterdam