Education Research Current Organisation and Cooperation NL
Login as
Prospective student Student Employee
Bachelor Master VU for Professionals
Exchange programme VU Amsterdam Summer School Honours programme VU-NT2 Semester in Amsterdam
PhD at VU Amsterdam Research highlights Prizes and distinctions
Research institutes Our scientists Research Impact Support Portal Creating impact
News Events calendar Energy in transition
Israël and Palestinian regions Women at the top Culture on campus
Practical matters Mission and core values Entrepreneurship on VU Campus
Organisation Partnerships Alumni University Library Working at VU Amsterdam
Sorry! De informatie die je zoekt, is enkel beschikbaar in het Engels.
This programme is saved in My Study Choice.
Something went wrong with processing the request.
Something went wrong with processing the request.

PhD degree awarded to Niek Lamoree

Share
16 February 2024
On the 20th of December, Niek Lamoree successfully defended his Ph.D. thesis titled "Pseudoholomorphic curve methods for infinite-dimensional Hamiltonian systems."

In 2019 Niek started his research as a PhD student with Dr. Oliver Fabert, extending the celebrated use of pseudoholomorphic curves from symplectic geometry to the setting of field equations.

Pseudoholomorphic curves were introduced in the 80s by the famous mathematician Mikhail Gromov and in the following years were used by Andreas Floer to prove a conjecture by Vladimir Arnold about the number of periodic solutions that a Hamiltonian system (at least) must have. Such systems describe the dynamics of a classical physical system and one is interested periodic motions. Rather than counting periodic solutions of such dynamical systems directly, one can count how many pseudoholomorphic curves exist that connect two such periodic solutions. This has proven to be a very fruitful way of viewing such counting problems.

Since then the field has developed into many different directions and the techniques have been used in different areas of mathematics and physics. However, the techniques were only applied to finite-dimensional Hamiltonian systems, describing the motion of some object (a particle, or planets) through space. Infinite-dimensional Hamiltonian systems on the other hand describe the evolution of fields, such as the Maxwell equations describing the behavior of electromagnetic fields.

During his PhD, Niek worked together with his supervisor to develop a way in which the pseudoholomorphic curve techniques could be used to prove the existence of periodic solutions of a class of infinite-dimensional Hamiltonian systems describing, for example, the behavior of a charged particle coupled with an electromagnetic field. This research combines the field of symplectic geometry, from which the pseudoholomorphic curve techniques stem, with the field of partial differential equations.

Currently Niek works with Dr. Fabert to include a more general class of equations in the aforementioned results. Developing similar techniques but from another point of view, namely that of polysymplectic geometry, Niek also works together with his supervisor and Ronen Brilleslijper, Dr. Fabert’s other PhD student, to prove similar results about the number of periodic solutions, to another class of dynamical systems.

Niek’s thesis is available from this link: https://research.vu.nl/en/publications/pseudoholomorphic-curve-methods-for-infinite-dimensional-hamilton

Quick links

Homepage Culture on campus VU Sports Centre Dashboard

Study

Academic calendar Study guide Timetable Canvas

Featured

VUfonds VU Magazine Ad Valvas

About VU

Contact us Working at VU Amsterdam Faculties Divisions
Privacy Disclaimer Veiligheid Webcolofon Cookies Webarchief

Copyright © 2025 - Vrije Universiteit Amsterdam