Biomedical Sciences MSc Vrije Universiteit Amsterdam - Fac. der Aard- en Levenswetenschappen - M Biomedical Sciences - 2013-2014 The aim of the programme is to equip the student with the knowledge, skills and understanding required to operate as an independent professional within the disciplines covered by the Master's programme, and to be a suitable candidate for a subsequent career in biomedical research. The Master's programme in Biomedical Sciences guarantees its students in-depth research experience with a solid academic basis, combined with the communication skills that are needed to perform at the international level. While the two-year programme is taught in English, some Dutch components are included in the Education specialization. The student can choose from the following specializations: #### Research: - · Cardiovascular diseases - Immunology - · Infectious diseases - · International public health - · Psychophysiology - · Medical and behavioral genomics Management, Communication, Education (to be combined with a research specialization): - · Societal specialization (M) - · Communication specialization (C) - · Education specialization (E) The Societal, Communication and Education specializations are one-year programmes that cannot be combined with each other, and which must be combined with one of the research specializations. The year schedule 2013 - 2014 can be found at the FALW-website. Further information about the MSc programme Biomedical Sciences. A complete programme description can be found at the FALW-website . ## Inhoudsopgave | Expired programme components Biomedical | 1 | |---|----| | MSc Biomedical Sciences, Non-Research Specialisation Programmes | 1 | | MSc Biomedical Sciences, Communication Specialisation | 1 | | Biology | 1 | | MSc Biomedical Sciences, Specialisation Science in Society | 2 | | MSc Biomedical Sciences, Research Specialisation Programmes | 2 | | MSc Biomedical Sciences, spec. Cardiovascular Diseases | 2 | | spec. Cardiovascular Dis choose 18 EC | 3 | | MSc Biomedical Sciences, spec. Immunology | 3 | | verplichte vakken | 4 | | kies tenminste 2 van deze cursussen | 4 | | MSc Biomedical Sciences, spec. Infectious Diseases | 4 | | verplichte vakken | 4 | | minimaal 6 EC te behalen | 5 | | MSc Biomedical Sciences, spec. International Public Health | 5 | | MSc Biomedical Sciences, spec. Medical and Behavioural Genomics | 5 | | verplicht vak | 6 | | minimaal 17 EC te behalen | 6 | | MSc Biomedical Sciences, spec. Psychophysiology | 6 | | Msc Biomedical Sciences, compulsory courses | 7 | | Capita courses MSc Biomedical Science | 7 | | Vak: Advanced Human Neurophysiology (Periode 2) | 7 | | Vak: Advanced Molecular Immunology and Cell Biology (Periode 1) | 10 | | Vak: Analysis of Governmental Policy (Periode 1) | 12 | | Vak: Business Management in Health and Life Sciences (Periode 2) | 14 | | Vak: Caput Dilemmas in the Implementation of Public Health Programmes () | 15 | | Vak: Caput Institutionalising Participatory Approaches in the South () | 16 | | Vak: Caput Protein Structure as Molecular Basis of Disease (Ac. Jaar (september)) | 17 | | Vak: Clinical Aspects of Heart and Circulation (Periode 1) | 18 | | Vak: Clinical development and clinical trials (Periode 3) | 19 | | Vak: Clinical Immunology (Periode 2) | 21 | | Vak: Communication, Organization and Management (Periode 2) | 22 | | Vak: Complex Trait Genetics (Periode 2) | 24 | | Vak: Containment Strategies of Infectious Diseases in Global Context (Periode 1) | 26 | | Vak: Disability and Development (Periode 2) | 27 | | Vak: Entrepreneurship in Health and Life Sciences (Periode 2) | 29 | | Vak: Ethics in Life Sciences (Periode 3) | 31 | | Vak: Experimental and clinical neuroendocrinology (Periode 2) | 32 | | Vak: Functional Brain Imaging (Periode 1) | 33 | | Vak: Gene Hunting (Periode 1) | 35 | | Vak: Genomic Data Analysis (Periode 2) | 36 | | Vak: Health Geography (Periode 2) | 38 | | Vak: Health, Globalisation and Human Rights (Periode 2) | 39 | | Vak: History of Life Sciences (Ac. Jaar (september), Periode 3) | 41 | |---|----| | Vak: Immunity and Disease (Periode 1) | 42 | | Vak: International Comparative Analyses of Health Care Systems (Periode 3) | 43 | | Vak: Internship Biomedical Sciences (Ac. Jaar (september)) | 46 | | Vak: Internship Cardiovascular Diseases (Ac. Jaar (september)) | 46 | | Vak: Internship Communication Specialisation (Ac. Jaar (september)) | 46 | | Vak: Internship Educational Specialisation (Ac. Jaar (september)) | 46 | | Vak: Internship Immunology (Ac. Jaar (september)) | 46 | | Vak: Internship Infectious Diseases (Ac. Jaar (september)) | 47 | | Vak: Internship International Public Health (Ac. Jaar (september)) | 47 | | Vak: Internship Med. and Behavioural Genomics (Ac. Jaar (september)) | 47 | | Vak: Internship Societal Specialisation (Ac. Jaar (september)) | 47 | | Vak: Literature thesis Biomedical Sciences (Ac. Jaar (september)) | 48 | | Vak: Molecular Infection Biology (Periode 2) | 48 | | Vak: Parasitology (Periode 2) | 49 | | Vak: Pathophysiology of Heart and Circulation (Periode 1) | 51 | | Vak: Policy, Management and Organisation in International Public Health (Periode 2) | 51 | | Vak: Policy, Politics and Participation (Periode 2) | 52 | | Vak: Psychophysiology (Periode 1) | 54 | | Vak: Qualitative and Quantitative Research Methods (Periode 1) | 55 | | Vak: Remodelling of the Circulatory System (Periode 2) | 56 | | Vak: Research Methods for Need Assessments (Periode 1) | 57 | | Vak: Science and Communication (Periode 1) | 59 | | Vak: Science in Dialogue (Periode 2) | 60 | | Vak: Science Journalism (Periode 2) | 61 | | Vak: Science Museology (Periode 3) | 63 | | Vak: Scientific Writing in English (Ac. Jaar (september)) | 64 | | Vak: Statistical Genetics for Gene Finding () | 66 | | Vak: Statistical Genetics for Gene Finding (Periode 1) | 67 | | Vak: Vascular Function and Metabolic Diseases (Ac. Jaar (september)) | 69 | | Vak: Viral Oncogenesis (Periode 4) | 70 | # Expired programme components Biomedical ## Courses: | Name | Period | Credits | Code | |---------------------------------------|-----------------------------------|---------|-----------| | History of Life Sciences | Ac. Year (September),
Period 3 | 3.0 | AM_471017 | | Statistical Genetics for Gene Finding | | 5.0 | AM_470734 | # MSc Biomedical Sciences, Non-Research Specialisation Programmes ## Programme components: - Communication Specialization - Education specialization Biology - Societal Specialization # MSc Biomedical Sciences, Communication Specialisation ## Courses: | Name | Period | Credits | Code | |---|----------------------|---------|-----------| | Communication, Organization and Management | Period 2 | 6.0 | AM_470572 | | Internship Communication Specialisation | Ac. Year (September) | 30.0 | AM_471145 | | Qualitative and Quantitative Research Methods | Period 1 | 6.0 | AM_470582 | | Science and Communication | Period 1 | 6.0 | AM_470587 | | Science in Dialogue | Period 2 | 6.0 | AM_1002 | | Science Journalism | Period 2 | 6.0 | AM_471014 | | Science Museology | Period 3 | 6.0 | AM_470590 | ## **Biology** ## Courses: | Name | Period | Credits | Code | |------------------------|----------------------|---------|-----------| | Internship Educational | Ac. Year (September) | 30.0 | AM_471143 | | Specialisation | | | | ## MSc Biomedical Sciences, Specialisation Science in Society ### Courses: | Name | Period | Credits | Code | |---|----------------------|---------|-----------| | Analysis of Governmental Policy | Period 1 | 6.0 | AM_470571 | | Business Management in Health and Life Sciences | Period 2 | 6.0 | AM_470584 | | Clinical development and clinical trials | Period 3 | 6.0 | AM_470585 | | Communication, Organization and Management | Period 2 | 6.0 | AM_470572 | | Disability and Development | Period 2 | 6.0 | AM_470588 | | Entrepreneurship in Health and Life Sciences | Period 2 | 6.0 | AM_470575 | | Health, Globalisation and Human Rights | Period 2 | 6.0 | AM_470818 | | Internship Societal
Specialisation | Ac. Year (September) | 30.0 | AM_471144 | | Policy, Politics and Participation | Period 2 | 6.0 | AM_470589 | | Qualitative and Quantitative Research Methods | Period 1 | 6.0 | AM_470582 | | Science in Dialogue | Period 2 | 6.0 | AM_1002 | # MSc Biomedical Sciences, Research Specialisation Programmes ## Programme components: - Specialization Cardiovascular Diseases - Specialization Immunology - Specialization Infectious Diseases - Specialization International Public Health - Specialization Medical and Behavioral Genomics - Specialization Psychophysiology ## MSc Biomedical Sciences, spec. Cardiovascular Diseases The Master's graduate with a specialization in Cardiovascular diseases has a broad understanding of the cardiovascular system. The topics that are addressed range from atherosclerosis to ventricular dysfunction, giving the student a thorough overview of this particular field of research. The Master's graduate has the ability to conduct scientific research in the field of cardiovascular disease and to critically assess the results of cardiovascular research. The Master's graduate has specialized in one of the subjects within the field of cardiovascular disease. He/she possesses knowledge of current theory and the key research questions in this field and has an understanding of the scientific and social relevance of this subject area. Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given
in EC. ## Opleidingsdelen: - spec. Cardiovascular Dis. - choose 18 EC #### Vakken: | Naam | Periode | Credits | Code | |---------------------------|----------------------|---------|-----------| | Internship Cardiovascular | Ac. Jaar (september) | 30.0 | AM_471136 | | Diseases | | | | ## spec. Cardiovascular Dis. - choose 18 EC #### Vakken: | Naam | Periode | Credits | Code | |---|----------------------|---------|--------------| | Clinical Aspects of Heart and Circulation | Periode 1 | 6.0 | M_CCLINBIO09 | | Pathophysiology of Heart and Circulation | Periode 1 | 6.0 | M_CPATHO09 | | Remodelling of the Circulatory System | Periode 2 | 6.0 | M_CREMODE09 | | Vascular Function and
Metabolic Diseases | Ac. Jaar (september) | 6.0 | M_CVASCFU09 | # MSc Biomedical Sciences, spec. Immunology The Master's graduate with a specialization in Immunology has a broad understanding of immunological processes, ranging from the molecular and cellular interactions between host and pathogen to an integrative knowledge of the role of the immune system in various pathologies, such as cancer, infectious diseases and autoimmunity. The Master's graduate has specialized in one of the subjects within the field of immunology. He/she possesses knowledge of current theory and the key research questions in the field of immunology and has an understanding of the scientific and social relevance of this subject area. Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC. ## Opleidingsdelen: - verplichte vakken - kies tenminste 2 van deze cursussen ## verplichte vakken Vakken: | Naam | Periode | Credits | Code | |--|----------------------|---------|-----------| | Advanced Molecular
Immunology and Cell
Biology | Periode 1 | 6.0 | AM_470656 | | Internship Immunology | Ac. Jaar (september) | 30.0 | AM_471137 | ## kies tenminste 2 van deze cursussen Vakken: | Naam | Periode | Credits | Code | |-----------------------------|-----------|---------|-----------| | Clinical Immunology | Periode 2 | 6.0 | AM_470655 | | Immunity and Disease | Periode 1 | 6.0 | AM_1031 | | Molecular Infection Biology | Periode 2 | 6.0 | AM_470657 | ## MSc Biomedical Sciences, spec. Infectious Diseases The Master's graduate with a specialization in Infectious diseases has a broad understanding of the biology of pathogenic organisms and the interaction between pathogens and their hosts. The Master's graduate has the ability to conduct scientific research in the field of medical microbiology and to critically assess the results of microbial research. The Master's graduate has specialized in one of the subjects within the field of medical microbiology. He/she possesses knowledge of current theory and the key research questions in this field and has an understanding of the scientific and social relevance of this subject area. Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC. ## Opleidingsdelen: - verplichte vakken - minimaal 6 EC te behalen ## verplichte vakken ## Vakken: | Naam | Periode | Credits | Code | |--|----------------------|---------|-----------| | Advanced Molecular
Immunology and Cell
Biology | Periode 1 | 6.0 | AM_470656 | | Internship Infectious Diseases | Ac. Jaar (september) | 30.0 | AM_471138 | | Molecular Infection Biology | Periode 2 | 6.0 | AM_470657 | # minimaal 6 EC te behalen ## Vakken: | Naam | Periode | Credits | Code | |---|-----------|---------|-------------| | Containment Strategies of Infectious Diseases in Global Context | Periode 1 | 6.0 | AM_470127 | | Health Geography | Periode 2 | 6.0 | AM_470094 | | Parasitology | Periode 2 | 6.0 | AM_470052 | | Viral Oncogenesis | Periode 4 | 3.0 | M_OVIRONC03 | # MSc Biomedical Sciences, spec. International Public Health ## Courses: | Name | Period | Credits | Code | |--|----------------------|---------|-----------| | Containment Strategies of
Infectious Diseases in
Global Context | Period 1 | 6.0 | AM_470127 | | Disability and Development | Period 2 | 6.0 | AM_470588 | | Health, Globalisation and Human Rights | Period 2 | 6.0 | AM_470818 | | International Comparative Analyses of Health Care Systems | Period 3 | 6.0 | AM_470820 | | Internship International
Public Health | Ac. Year (September) | 30.0 | AM_471139 | | Policy, Management and
Organisation in International
Public Health | Period 2 | 6.0 | AM_470819 | | Research Methods for Need Assessments | Period 1 | 6.0 | AM_470817 | MSc Biomedical Sciences, spec. Medical and Behavioural Genomics The Master's graduate with a specialization in Medical and Behavioral Genomics has an understanding and knowledge of the application of genomics in studying complex disorders and traits, including mental health and neurodevelopmental disorders. In this rapidly developing field, the student's knowledge covers basic classical genetics and biometrical approaches, genetic epidemiology and genetic association and linkage methods. Skills include application of these methods not only to data from genetics and genomics platforms, but also from gene expression (transcriptomics) and endophenotypes. Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC. ## Opleidingsdelen: - verplicht vak - minimaal 17 EC te behalen ## verplicht vak #### Vakken: | Naam | Periode | Credits | Code | |----------------------|----------------------|---------|-----------| | Internship Med. and | Ac. Jaar (september) | 30.0 | AM_471142 | | Behavioural Genomics | , , | | | ## minimaal 17 EC te behalen ### Vakken: | Naam | Periode | Credits | Code | |-------------------------------|-----------|---------|-----------| | Complex Trait Genetics | Periode 2 | 6.0 | AM_470733 | | Gene Hunting | Periode 1 | 6.0 | AM_470729 | | Genomic Data Analysis | Periode 2 | 6.0 | AM_1008 | | Statistical Genetics for Gene | Periode 1 | 6.0 | AM_1040 | # MSc Biomedical Sciences, spec. Psychophysiology The Master's graduate with a specialization in Psychophysiology has a broad understanding of the functions of the central and peripheral nervous system and a special knowledge of the measurement of these functions through physiological recording techniques (cardiovascular, EEG, MRI, hormones). The Master's graduate has the ability to conduct scientific research in the field of psychophysiology and to critically assess the results of psychophysiological research. The Master's graduate has specialized in one of the subjects within the field of psychophysiology. He/she possesses practical skills in psychophysiological measurement and has knowledge of current theory and the key research questions in this field. She/he has an understanding of the scientific and social relevance of this subject area. Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC. Vakken: | Naam | Periode | Credits | Code | |--|-----------|---------|-----------| | Advanced Human
Neurophysiology | Periode 2 | 6.0 | AM_1003 | | Experimental and clinical neuroendocrinology | Periode 2 | 6.0 | AM_470700 | | Functional Brain Imaging | Periode 1 | 6.0 | AM_470715 | | Psychophysiology | Periode 1 | 6.0 | AM_470736 | ## Msc Biomedical Sciences, compulsory courses Vakken: | Naam | Periode | Credits | Code | |---------------------------------------|----------------------|---------|-----------| | Ethics in Life Sciences | Periode 3 | 3.0 | AM_470707 | | Literature thesis Biomedical Sciences | Ac. Jaar (september) | 9.0 | AM_471135 | | Scientific Writing in English | Ac. Jaar (september) | 3.0 | AM_471023 | # Capita courses MSc Biomedical Science Vakken: | Naam | Periode | Credits | Code | |--|----------------------|---------|-----------| | Caput Dilemmas in the Implementation of Public Health Programmes | | 3.0 | AM_470565 | | Caput Institutionalising Participatory Approaches in the South | | 3.0 | AM_470567 | | Caput Protein Structure as
Molecular Basis of Disease | Ac. Jaar (september) | 6.0 | AM_470120 | | Internship Biomedical
Sciences | Ac. Jaar (september) | 30.0 | AM_471158 | # Advanced Human Neurophysiology | Vakcode | AM_1003 () | |---------------|---| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. K. Linkenkaer Hansen | | Docent(en) | dr. D.J.A. Smit, dr. K. Linkenkaer Hansen | | Lesmethode(n) | Hoorcollege, Werkgroep, Computerpracticum | | Niveau | 600 | At the end of the course the student should be able to: - 1. Prepare a subject for an EEG measurement and understand acquisition settings such as sampling
frequency, filters, impedance, etc. - 2. Explain how the human brain generates scalp electroencephalographic (EEG) signals, both ongoing oscillations and event-related potentials (ERPs). - 3. Analyze both ongoing (spontaneous) and ERP data using MATLAB toolboxes. - 4. Understand the principles and give examples of these techniques as applied in various scientific and medical fields, including sleep research, brain-computer interfacing, and genetics. - 5. Explain the principle of inverse modeling and outline the possibilities and limitations based on own experiences. - 6. Apply state-of-the-art time-series techniques to M/EEG data and understand their interpretation as a biomarker and genetic marker for cognition and psychopathology, - 7. Perform quantitative and statistical analysis of own data and use the results to make conclusions about the relation between brain activity and cognition/behavior. - 8. Summarize the results of your research on a poster and present and defend the interpretation. Thus, you will acquire theoretical and practical experience with EEG. - 9. Make an informed decision as to continue a specialization in M/EEG as part of his/her PhD training. ## Inhoud vak The course aims to provide you with the skills to perform an electrophysiological experiment from beginning to end. This requires highly practical skills in the preparation of subjects and use of highly sensitive/expensive equipment, proficiency in the state-of-the-art signal analysis techniques, and a broad theoretical knowledge of how the human neurophysiology can be studied with the techniques of magneto- and electroencephalography. The generating mechanisms of EEG oscillations and ERPs are treated in detail, as well as the theory behind digital signal processing. This will include frequency decomposition of the EEG (Fourier analysis), time-frequency analysis (wavelet), filtering, and methods to quantify temporal and spatial correlations (i.e., Detrended Fluctuation Analysis and cross-channel synchrony, respectively). An important component of the course is to teach you how to perform high-density EEG recordings and to analyze these signals with classical as well as more recent non-linear methods. You will work in small groups to record, analyze and present both data on EEG its cognitive/behavioral correlates at the end of the course. The importance of non-stimulus driven brain activity and cognition for brain-related disorders such as depression, dementia, insomnia or attention deficit and hyperarousal disorder is discussed. ## Onderwijsvorm The study credits amount to 168 hours of study, which are divided approximately as follows: Activity Hours of study Lectures 20 Self study (literature and lecture sheets) 40 Lab experiments 8 Data analysis and computer practicals 32 Group discussions (journal club preparation) 4 Plenary discussions 6 Poster preparation 18 Preparation for exams (poster and written) 40 Total 168 ### **Toetsvorm** EEG/ERP data collection under supervision; analysis and presentation of data on research poster (40%). Written examination (60%). #### Literatuur Steven J. Luck 'An introduction to the event-related potential technique'. (Boston: The MIT press). Chapters 1, 3 and 4. Nikulin VV, Linkenkaer-Hansen K, Nolte G, Lemm S, Müller KR, Ilmoniemi RJ, Curio G. A novel mechanism for evoked responses in the human brain. Eur J Neurosci. 2007;25:3146–54. Mazaheri A, Jensen O. Asymmetric amplitude modulations of brain oscillations generate slow evoked responses. J Neurosci 2008;28:7781–7. Jensen O, van Dijk H, Mazaheri A. Amplitude asymmetry as a mechanism for the generation of slow evoked responses. Clin Neurophysiol 2010. Nikulin VV, Linkenkaer-Hansen K, Nolte G, Curio G. Non-zero mean and asymmetry of neuronal oscillations have different implications for evoked responses. Clin Neurophysiol 2010;121:186–93. Hardstone R, Poil S-S, Schiavone G, Jansen R, Nikulin VV, Mansvelder HD, Linkenkaer-Hansen K. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Frontiers in Physiology. 3:450. doi:10.3389/fphys.2012.00450. 2012. De Geus EJC (2002) Introducing genetic psychophysiology. Biol Psychol 61:1–10. De Geus E (2010) From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Medicine 2:1–4. #### Aanbevolen voorkennis Brein en Medicijn and/or Humane Neurofysiologie. #### Doelgroep Masters and PhD students with interest in human brain function in general and EEG methodology in particular. ## Advanced Molecular Immunology and Cell Biology | Vakcode | AM_470656 () | |---------------|---| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. M. van Egmond | | Docent(en) | Dr. M. van Egmond, prof. dr. R.E. Mebius, dr. T. van der
Pouw Kraan, prof. dr. H.E. de Vries, dr. ing. S.J. van Vliet,
dr. W.W.J. Unger | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | #### Doel vak To acquire insight into: - cellular interactions within the immune system and how molecular diversity is generated to regulate immune responses. - the various strategies of host immune responses against pathogens, and how pathogens escape proper immune responses. - the various strategies of the host to positively or negatively affect immune responses during cancer. - mechanisms by which the immune system regulates either immune activation or tolerance induction. - the mechanism of cell migration within the immune system. End terms: Knowledge: Knowledge: At the end of the course the student is familiar with current knowledge on the (molecular) pathways involved in the induction and regulation of immune responses in health and disease. Skills: - The student is capable of applying the acquired knowledge and can interpret scientific literature and scientific hypotheses of each of the topics described above. - The student is able to formulate a scientific hypothesis and can design a research proposal addressing the hypothesis. - The student is able to present and discuss the research proposal with peers. #### Inhoud vak Immunology is a rapid growing field of research in medicine and attracts a lot of attention for its contribution in various diseases such as infection diseases, cancer and auto-immunity. The course will give the student the opportunity to enhance the knowledge on the scientific aspects within the field of immunology. Special focus lies on the immunological processes underlying homeostasis control i.e., tolerance induction, immunity, antigen presentation and processes that lead to the development of inflammatory diseases (infection diseases through pathogens), auto-immunity (neuro-immunology) and cancer. Because this is an advanced course in the field of immunology, and will go into depth, particular on molecular details, students should be familiar with basic immunology preferably via a previous basic training course in immunology. #### Onderwijsvorm The course covers immunological processes at the molecular level, and consists of lectures and study groups. In the latter part students will read review articles as well as primary scientific articles on the subjects and discuss in groups opposing views on the molecular immunological processes that occur in the different stages of homeostasis and disease control. State of the art will be discussed of all topics, which will facilitate the study of scientific articles. Additionally, there is time for self study as well as time to design a research proposal, which will be presented. The first three weeks include lectures, study groups, self study and preparation and presentation of the research proposal, whereas the last week mainly covers self study and the exam. In the last week, subjects and possibilities of an internship in the field of immunology will be presented. Contact hours with teachers and/ or coordinators: 45 ### **Toetsvorm** A written exam at the end of week 4 includes assay ('open') and multiple choice questions (85% of grade). The research proposal has to be presented and accounts for 15% of the grade. ### Literatuur Lectures, reviews and scientific papers are part of the material that covers the exam. Titles reviews and scientific papers (some changes may occur, final list will be posted on BB) #### Reviews - 1. Rossi M, Young JW. Human dendritic cells: potent antigenpresenting cells at the crossroads of innate and adaptive immunity. J Immunol. 2005 Aug 1;175(3):1373-81. - 2. Sallusto F, Mackay CR. Chemoattractants and their receptors in homeostasis and inflammation. Curr Opin Immunol. 2004 Dec;16(6):724-31. - 3. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011 Feb;30(1):16-34. - 4. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010 Sep;10(9):664-74. - 5. De Libero G et al., How the immune system detects lipid antigens. Prog Lipid Res. 2010 Apr;49(2):120-7. doi: - 10.1016/j.plipres.2009.10.002. Epub 2009 Oct 24. - 6. Surana NK, Kasper DL., The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol Rev. 2012 Jan;245(1):13-26. - 7. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006 Jan;7 (1):41-53. - 8. Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol. 2004 Aug;4(8):595-602. - 9. Drew M. Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer 12, 252-264 (2012) - 10. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006 Jul;6(7):508-19. - 11. Schirmer SH, van Nooijen FC, Piek JJ, van Royen N. Stimulation of collateral artery growth: travelling further down the road to
clinical application. Heart. 2009 Mar;95(3):191-7. #### Research articles - 1. Marsland BJ, Bättig P, Bauer M, Ruedl C, Lässing U, Beerli RR, Dietmeier K, Ivanova L, Pfister T, Vogt L, Nakano H, Nembrini C, Saudan P, Kopf M, Bachmann MF. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. - 2. Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur J Immunol. 2010 May;40(5):1255-65. - 3. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, Kolls JK, Khader SA, Randall TD. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol. 2011 Jun 12;12(7):639-46. - 4. Reboldi A. et al., C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009 May;10(5):514-23. doi: 10.1038/ni.1716. Epub 2009 Mar 22. - 5. Feau S, Arens R, Togher S, Schoenberger SP. Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat Immunol. 2011 Jul 31;12(9):908-13. - 6. Sierra JR, Corso S, Caione L, Cepero V, Conrotto P, Cignetti A, Piacibello W, Kumanogoh A, Kikutani H, Comoglio PM, Tamagnone L, Giordano S. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med. 2008 Jul 7;205 (7):1673-85. - 7. Medina RJ, O'Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics. 2010 May 13;3:18. 8. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol. 2010 Apr;176(4):1564-76. #### Vereiste voorkennis Bachelor's course immunology: solid knowledge on basic immunology is compulsory before the start of the course. ### Aanbevolen voorkennis It is expected that all students are familiar with Parham, The immune system, 3e ed. Garland Science: Chapter 1-9, and 10.12 t/m 10.20 en 10.24 t/m 10.27; 11.1 t/m 11.6 en 11.8 t/m 11.25. #### Doelgroep Students with a keen interest to study immunological processes that form a basis for a variety of occurrences of diseases. In particular those that cover the interaction between host-pathogen, host-tumor and homeostatic control. ## Overige informatie Study groups and active participation are compulsory. A substitution assignment is required when one or more workshops have not been attended, or when participation is judged as unsatisfactory. # Analysis of Governmental Policy | Vakcode | AM_470571 () | |---------|--------------| | Periode | Periode 1 | | Credits | 6.0 | |---------------|---| | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.T. de Cock Buning | | Docent(en) | prof. dr. J.T. de Cock Buning | | Lesmethode(n) | Hoorcollege, Werkgroep, Computerpracticum | | Niveau | 500 | - To acquire critical knowledge regarding different policy models and theories - To master the correct use of central concepts in political and policy discourses. - To further deepen your analytic skills with respect to the critical assessment of a complex societal question or dilemma in the health and life science: - To learn to integrate science- specific knowledge with the knowledge and skills of other disciplines of the social sciences - To practice skills in data collection and analysis - To learn to set up valid lines of argumentation; - To learn to translate research findings into policy recommendations; - To get experienced in writing a policy advisory report; - To improve your communication skills; - To improve your skills in working effectively in a project team, through team building, team analysis and feedback. ### Inhoud vak Governmental policy affects millions of people and is thus object of intensive debate and target of strong societal forces, like political parties, media and interest groups. Being an advisor or policy maker requires a thorough understanding of the dynamics of policy making, as well as from the psychologal side as from the more social structures and their influence on a deliberative democracy. The course contains several lectures on theoretical concepts and models concerning policy analysis. Furthermore you will be challenged, under supervision, to apply and practice these concepts and models in the project assignment. From the very first day, you will be part of a project team of about ten students. You are confronted with a real policy problem from an external commissioning institution (e. g. a non-governmental organization, a Ministry, an advisory council). Within those 4 weeks you will collect data by literature review and interviews and conduct an interdisciplinary analysis on the basis of which you provide an advice. Specific attention is paid to working in a project team and team building. At the end of the course, you prepare an advisory report. On the last day of the course you present the report to the representative of the external institution who commissioned the project. In that presentation your team will highlight the main results of your analysis and defend the recommendations you propose. ## Onderwijsvorm Analysis of Governmental Policy is a fulltime course of four weeks (6 ECTS). The most recent course schedule is to be found on Blackboard. The total study time is 160 hours. Tuition methods include lectures, training workshops, and self-study. The different elements have the following study time: - lectures: 15 hours - project: 147 hours (within the project: 18x 1 hour coach meeting) - self study: (within the project, defined in the group) - examination: 2 hours Please note that attendance to the project meetings is compulsory. Attendance to the lectures is highly recommended. In our experience, relying on self-study alone is insufficient to pass the exam #### **Toetsvorm** Written exam (25%) and individual evaluation based on personal performance in the project team (50%), and assessment of various group products (report and presentation (25%)). Exam has to be passed successfully. #### Literatuur Buse, Mays and Walt: "Making Health Policy" McGrawHill/Open University press. (at least 2nd edition 2012). ## Aanbevolen voorkennis The project integrates the learned lessons from the first compulsory MPA courses: Qualitative & Quantitative Methods.\ ### Doelgroep Compulsory course within the Masterprogramme Management, Policy Analysis and entrepreneurship for the health and life sciences (MPA) and the Societal differentiation of Health, Life and Natural Sciences Masters programmes. ## Overige informatie The case is policy analysis and advice, but the exercised methods and skills are equally applicable to strategic marketing advice or evaluation studies. The teams will be coached by workgroup leaders. # Business Management in Health and Life Sciences | Vakcode | AM_470584 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. H.J.H.M. Claassen | | Docent(en) | prof. dr. H.J.H.M. Claassen | | Lesmethode(n) | Hoorcollege, Computerpracticum | | Niveau | 500 | ## Doel vak To acquire insight in different legal entities in which to organise a company or enterprise To get acquainted with: - financial and legal aspects - patents and alternative valorization methods - marketing and sales aspects of businesses To acquire insight in Human Resource Management models To get acquainted with different models of financing To learn to think and act in line with economic and sustainability ### issues for the company ### Inhoud vak Increasingly, health students will be confronted with a corporate way of thinking in health organisations. To function in such an environment it is critical that students have basic knowledge of fiscal and legal entities and organisational forms of corporate structures (including start-ups). Furthermore, they have to understand what motivates decision makers and financial officers in different companies (also geographical differences). This course comprises a theoretical and a practical part. The theoretical part consists of interactive classes with various experts from the field. Topics that will be dealt with in detail include: intellectual property, portfolio management, finance, risk capital, grants and subsidies, team building and people management, different legal entities, fiscal and legal aspects when starting a new company, SWOT analysis in the life sciences and clinical trials. The practical part consists of bringing the knowledge acquired during the classes into practice in an assignment in which you develop a (personal career) businessplan. ## Onderwijsvorm Lectures:35h Assignment: 4h Work on assignment (self study): 40h Preparing the exam: 81h #### **Toetsvorm** Written exam: 50% Personal Business Plan: 50% Both have to be passed #### Literatuur Will be announced on Blackboard 1 month before the start of the course #### Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences. ### Overige informatie Guest lecturers/organisations: - Robert AI, TU Eindhoven - Tamar Weenen, VU university - Esther Pronker, VU university - Patrick de Boer & Jochem Bosschenbroek, Ttopstart BV - Bart van Weezenbeek - Bart Bergstein, Forbion Capital partners - Michael Mellink & Majorie Soeter, Odgersberndtson - Marga Janse, innovatief LerenLeren BV - NL Octrooicenrtum - Price Waterhouse Coopers - AsjesBisseling Belastingadviseurs - ·
And others to be announced # Caput Dilemmas in the Implementation of Public Health Programmes | Vakcode | AM_470565 () | |---------|--------------| | Credits | 3.0 | | Voertaal | Engels | |-----------|---------------------------------------| | Faculteit | Fac. der Aard- en Levenswetenschappen | - The student has acquired in-dept insight in organization, management and policy in the field of Public Health in the South, with a specific focus on the implementation of vaccines programmes - Has acquired insight in the constraints in the implementation of Public Health programmes i.e. vaccination programmes in the South - Has applied the acquired insight in the implementation of results and interpretation and to evaluate the efficacy of vaccines programmes. - Has assessed constructively and systematically strategies to solve the constraints and to improve the efficacy of vaccination programmes through national and international organization #### Inhoud vak This caput will increase the student's knowledge in the North-South relation and particularly on the implementation of Public Health Programmes in the South with focus on an international context. Furthermore, the course will give an overall overview of the organization and policy strategies of organizations involved in the implementation of public health programmes which directly is linked with the containment course. Special attention is given to analyzing the dilemmas and challenges in public health and to generate ideas for future development. The analysis will focus on i) the experiences in working in the field and community based health programmes e. g. vaccination programmes; ii) the constraints and opportunities of the various implementation strategies; iii) methodological aspects of inter disciplinary research; iv) monitoring and evaluation of public health programmes; v) communication strategies to policymakers, professionals and the general public. ## Onderwijsvorm This theoretical course comprises self study and three discussion meetings. After a short introduction the student has to study various scientific articles that are then critically analyzed and discussed in a subsequent meeting. ### **Toetsvorm** Written of oral exam and individual assessment through evaluation assignments ## Literatuur Selected chapters and scientific articles. ## Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences. ## Overige informatie Self study. Course co-ordinator: E. Ruitenberg. For information and application: anna.van.luijn@falw.vu.nl # Caput Institutionalising Participatory Approaches in the South | Credits | 3.0 | |-------------|---------------------------------------| | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. M.B.M. Zweekhorst | - To develop a detailed understanding of the importance of participation strategies for sustainable development - To understand the difficulties that have been identified for institutionalising interactive approaches within existing organisations - To obtain insight into different strategies to institutionalize interactive approaches. - To acquire knowledge on the learning organisation. #### Inhoud vak During the past three decades participation has become increasingly visible as an issue in development. It is recognized that participation is a key element in poverty eradication and sustainable development. Methodologies to enhance participation are now commonly used in development projects and 'participation' has become a development orthodoxy. However, it is one thing to acknowledge the effectiveness of participatory approaches, but another to apply these approaches consistently over longer periods of time. This requires institutionalisation of these approaches within the organisations concerned, so as to build the necessary capacity. Most organisations are not well adapted to the application of participatory approaches. Some organisational change is therefore likely to be necessary if participatory approaches are to be institutionalised successfully. In this theoretical course you study in depth scientific literature about various theoretical concepts and practical experiences of institutionalisation processes of interactive approaches that were undertaken by organisations in the South. ## Onderwijsvorm This theoretical course comprises self study. After a short introduction you study various scientific articles that are then critically analyzed. ## **Toetsvorm** Individual assessment though an assignment #### Literatuur Selected scientific articles. ## Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences. ## Overige informatie Self study. Basic knowledge on organisation and management is required. For more information and application: anna.van.luijn@falw.vu.nl # Caput Protein Structure as Molecular Basis of Disease | Vakcode | AM_470120 () | |---------|--------------| | Periode | Ac. Jaar (september) | |-------------|---------------------------------------| | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. D. Bald | | Niveau | 500 | Overview of recent advances in research of molecular disease based on protein structure; Final attainment level: The student has insight into the relation between protein structure/ (mal-) function; The student has insight into the relation protein (mal)-function/disease. the student can screen, evaluate scientific literature and present a structured review recent advances ## Inhoud vak Suggested topics are: - Antibiotic action - Antibiotic Resistance - Cancer/p53 - Anti-Influenza drugs - Tuberculosis drug targets - Anti-aids drugs Feel free to suggest other topics related to protein structure/function, please ask the docent for more information. ## Onderwijsvorm You receive several original publications on a recent topic in protein structure/disease (see above) from the docent. You study these papers and collect more information (data-base search etc.) about research in the field. Finally you can either write up your results in a review-style paper or give an oral presentation. ## **Toetsvorm** Oral or written presentation (choice) ## Literatuur Literature depends on the topic chosen by the student. Literature search in self-study. ## Doelgroep Masters students Biomolecular Sciences, Biomedical Sciences, Biology, Pharmaceutical Sciences, Medical Natural Sciences # Clinical Aspects of Heart and Circulation | Vakcode | M_CCLINBIO09 (3120000) | |----------|------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | VUmc | |---------------|------------------------| | Coördinator | dr. O. Kamp | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 400 | This course focuses on the basic principles and clinical aspects of normal cardiac and circulatory function and dysfunction and the development of heart failure. Special attention will be given to the biophysical and clinical aspects of imaging. #### Inhoud vak The following topics will be addressed: Cardiac excitation and contraction, physics of heart and circulation, hem rheology and fluid dynamics, Coronary artery disease: ischemic syndromes; Heart failure: Pathophysiology, diagnosis, treatment and prognosis; Hypertension and other risk factors of Coronary Artery Disease: Clinical diagnosis, treatment and complications; Inflammation of the heart: Pericarditis, myocarditis and endocarditis; Mitral & aortic valve disease; Aortic and peripheral vascular disease: Clinical spectrum, diagnosis and treatment; Pulmonary hypertension; Clinical recognition of supra- and ventricular arrhythmias; Cardiovascular positron emission tomography, MRI, Ultrasound; Implants: pacemakers/defibrillators; Cardiac Resynchronization Therapy (CRT). ## Onderwijsvorm Lectures, working groups, assignments ## **Toetsvorm** Written exam and assignments #### Literatuur Book: Cardiology, Crawford-Di Marco-Paulus 3rd Ed (recommended) syllabus including relevant articles. ## Intekenprocedure Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams. ## Clinical development and clinical trials | Vakcode | AM_470585 () | |---------------|---| | Periode | Periode 3 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | W.S. Konijn MSc | | Docent(en) | prof. dr. H.J.H.M. Claassen | | Lesmethode(n) | Hoorcollege, Computerpracticum, Werkgroep | | Niveau | 500 | To acquire knowledge and insight into the role and objectives of drug and clinical development process To acquire knowledge and insight into the clinical pharmacology in drug development, drug interactions, pharmacodynamic and metabolic interactions To acquire knowledge and insight into clinical study methodology To acquire knowledge and skills into the regulatory principles To acquire knowledge of ICH-GCP and quality To acquire knowledge and insight into clinical trial coordination To acquire knowledge and skills into the data management and statistics. To acquire insight into the ethical aspects To acquire insight into actual use of clinical trials in R&D strategies To learn to design a clinical study To acquire insight into the different epidemiologic study designs To acquire knowledge and skills into how exposure and disease in a population can be measured and how the relationships between them can be assessed (using SPSS) To acquire knowledge
and skills into interpreting and presenting the results of an epidemiologic study #### Inhoud vak The need for rigorous evaluation of components of health care is increasingly recognised worldwide. An important type of evaluation is the clinical trial. The most commonly performed clinical trials evaluate new drugs, medical devices, biologics, or other interventions on patients in strictly scientifically controlled settings, and are required for regulatory authority approval of new therapies. This course aims to provide students with a theoretical and practical understanding of the issues involved in the design, conduct, analysis and interpretation of clinical trials of health interventions. Furthermore classes are provided on which the actual use of clinical trials in day to day R&D strategies within industry and universities is addressed in detail. Classes include: 'Life Cycle of a Clinical Trial', 'Clinical Trial Methodology', 'ICH-GCP Principles', 'The Ethics Committee', 'Safety Considerations in Clinical Trials', 'Quality Control & Quality Assurance', 'Compliance, Misconduct & Fraud'. An additional week of basic epidemiology will help you to complement the knowledge obtained so far in the course with an understanding of the principles of other types of study designs (cross-sectional, longitudinal, case-control). Issues concerning exposure and disease measurement and exposure-disease relationships will be discussed in detail, and examples will be provided. Together with your colleagues, you will learn how to apply this knowledge first by hand (during the lectures), then to an epidemiologic database (during the computer-based sessions) and how to interpret the results critically. #### Onderwijsvorm Lectures:25h (Computer) workgroup: 32h Preparing the exam: 2h ## **Toetsvorm** Written exam: 100% #### Literatuur Will be announced on Blackboard 1 month before the start of the course ### Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences. ## Overige informatie Guest lecturers/organisations: - Eric Klaver - DOCS - Others to be announced ## Clinical Immunology | Vakcode | AM_470655 () | |---------------|---| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. T. van der Pouw Kraan | | Docent(en) | dr. C.J.J. Mulder, dr. T. van der Pouw Kraan, dr. B.W. van
Oosten, dr. J. Killestein, prof. dr. P. van der Valk, dr. ing.
S.J. van Vliet, dr. E.J.G. Peters, H.E. Hulst | | Lesmethode(n) | Hoorcollege | | Niveau | 500 | ## Doel vak To understand immunopathogenic processes that play a role in the onset and chronicity of three immunological diseases, that cover allergy, auto-immunity and infection diseases, such as celiac disease, multiple sclerosis (MS) and AIDS. To acquire insight in both clinical parameters as well as basic scientific principles that play a role in these diseases. To acquire insights in the currently used treatments to reduce disease activity. To understand the mechanism by which the immune system regulates these diseases, and how one could modify immune response to the benefit of the patient. To apply the acquired knowledge of scientific literature and scientific hypotheses of each of the topics described above by presenting it to their fellow students. ## Inhoud vak During the course three immunological diseases will be discussed: celiac disease, multiple sclerosis (MS) and AIDS, each for the duration of a week. The week will start with a clinical introduction into the features of the disease by a practicing clinician at the VUmc, who illustrates the symptoms in patients that have these diseases. Based on this introduction questions will be formulated and within small groups students will formulate answers through literature search. During the week more lectures will be given on the immunological mechanisms that play a role during these complex diseases. These lectures highlight molecular immunological tools used, as well as novel strategies such as genomics-proteomics profiling of the disease, the use of animal models that mimic disease, as well as vaccine development and treatment methodology of the diseases. Through self study and searching literature students will try to answer the questions via a written assay of 2-3 pages and an oral presentation for their fellow students, which is scheduled at Friday. ## Onderwijsvorm The course covers immunological processes as well as clinical parameters both at the molecular as well as the cellular level and will discuss both innate and adaptive immune responses. The course consists of lectures, selfstudy, practica and workshops. Practical works and workshops both are compulsory. In the latter part students will present their answers on questions based on literature searching and reading of reviews as well as the lectures. For the duration of one week one disease will be discussed, whereas the last week covers mainly selfstudy and the exam. ### Contact hours 19 hours lectures 15 hours workgroups and presentations ### **Toetsvorm** Lectures and workshops are compulsory and form part of the material that covers the exam. Active participation in discussion is part of the appraisal (presentations of answers to assay questions account for 10% of the exam). Written exam at the end of week 4 include 15 essay questions (90%). #### Literatuur The immune system by P. Parham 3th edition, Immunobiology by Janeway 7th edition, Case Studies in Immunology: A Clinical Companion (by Geha 6th edition), including a handout which contains recent reviews specialized on the immunological diseases discussed. #### Vereiste voorkennis Bachelors course Immunologie ### Doelgroep MSc students with a keen interest to study immunological processes within the complexity of diseases such as allergy, multiple sclerosis and AIDS. ## Overige informatie External lecturers: Dr. J. Borghans (UMCU) Prof. dr. F. Koning (LUMC) Dr. J. Samsom (ErasmusMC) Dr. W.A. Paxton (AMC) Prof. dr. T.B.H. Geijtenbeek (AMC) ## Communication, Organization and Management | Vakcode | AM_470572 () | |---------|--------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | |---------------|--| | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. J. Maas | | Docent(en) | dr. H. Wels, prof. dr. F. Scheele, dr. M.B.M. Zweekhorst | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | To get acquainted with theories on organisational behaviour To obtain a deeper understanding of communication from the perspective of sharing and influencing results To acquire knowledge on organisational structures and designs To get acquainted with important theories on organisational transitions and change management To acquire insight into different management practices in the health and life sciences sector To gain insight in leadership and interpersonal behaviour To obtain insight in methods for motivation and conflict management To improve communication skills To practise analytical and advisory skills #### Inhoud vak Organisations in the health and life science sector are changing fast, a phenomenon driven by newly emerging technologies and increasing societal complexity. A growing number of students with a beta degree will hold professional and managerial functions in these organisations. During this course students will learn how to be effective performers within these environments, both individually and in teams. This requires an understanding of the macro aspects of organisational behaviour, including designing organisations, managerial skills and ways of strategic thinking. Several speakers conduct lecturers on aspects as motivation, managing interpersonal behaviour, leadership, communication and developing and changing organisations. The speakers explain theories from literature and relate them to their practical experiences. In addition, the students interview managers in health organisations and analyse these interviews using the newly acquired theoretical concepts. Also, practical cases of health care companies will be analysed and discussed, resulting in advisory reports for management. With the other students you discuss your experiences and a coach helps you relate the experiences to theory. ## Onderwijsvorm Lectures (approximately 22 hours), response lectures (4 hours), self study, training workshops (12 hours), self-study and writing project assignment (approximately 120 hours). ## **Toetsvorm** Written exam (60%;) and assessment of the interviews, case study analysis, and reports (40%). Grades of both parts must at least be 6 or higher. #### Literatuur To be announced on Blackboard ## Doelgroep Compulsory course within the Master programme Management, Policy Analysis and Entrepreneurship for the Health and Life Sciences (MPA) and the Societal differentiation of Health, Life and Natural Sciences Masters programmes ## Overige informatie Attendance to training, workshops, interviews and discussions is indispensable ## **Complex Trait Genetics** | Vakcode | AM_470733 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. D.I. Boomsma | | Docent(en) | prof. dr. D.I. Boomsma | | Lesmethode(n) | Hoorcollege | | Niveau | 500 | #### Doel vak Provide the theoretical background into population and biometrical genetics so that students gain an understanding of the way the genome contributes to human variation. ## Inhoud vak Quantitative genetics is concerned with the inheritance of
those differences between individuals that are of degree rather than of kind (quantitative rather than qualitative). Such differences are seen for most complex traits (e.g. depression, cognitive abilities or attention problems). This course aims to provide an understanding of the inheritance of such quantitative differences in behavior, behavioral disorders, endophenotypes (e.g. blood pressure or brain volumes) underlying disease traits (e.g. hypertension or schizophrenia). Quantitative differences, as far as they are inherited, depend on genes with on average small effects and are usually influenced by gene differences at many loci. Consequently these genes cannot be identified by Mendelian segregation ratios (though they are subject to the laws of Mendelian transmission). The methods of quantitative genetics differ in two aspects from those employed in Mendelian genetics: since single progenies are uninformative the unit of study is the population; and the nature of quantitative differences requires the measurement (and not just the classification) of individuals. The extension of Mendelian genetics into quantitative genetics will be made in two stages: the genetic properties of populations (population genetics) and the inheritance of measurements (biometrical genetics). Quantitative genetics is now merging with molecular genetics and the last part of this course will be devoted to methods for the localization and characterization of genes causing quantitative variation, focusing on recent developments using genome wide association (GWA) analysis. ## Onderwijsvorm Combined lectures and work groups, twice 4 hours per week #### **Toetsvorm** Course grades will be based on 3 assignments; for ~40%, 20% and 40% of grades - 1) Read papers (references provided) and write a short essay about current issues / state-of-the-art in human genetics (focus on genetic association studies). Select one empricial paper; (try to) read it. Indicate what is unclear to you. At the end of this course you will asked to review your own essay and then indicate what you now understand better than before. - 2) Problems from the book to be assigned after each lecture (about 4 or - 5) as home work before the next class. Students will be asked to present the solutions to the problems in class and part of grading depends on how well solutions are presented. - 3) Final assignment: oral presentations on a research topic; topics can be chosen from a list of papers or book chapters. #### Literatuur Book: Falconer & Mackay: Introduction to Quantitative Genetics (1996) NB final list of papers may change when new papers come out - 4 papers / commentaries from the New England J of Medicine 23 april, 2009: - J. Hardy and A. Singleton: Current Concepts: Genomewide Association Studies and Human Disease - D. B. Goldstein: Common Genetic Variation and Human Traits - J. N. Hirschhorn: Genomewide Association Studies Illuminating Biologic Pathways - P. Kraft and D. J. Hunter: Genetic Risk Prediction Are We There Yet? ## Recent review papers Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7-24. Hirschhorn JN, Gajdos ZK. Genome-wide association studies: results from the first few years and potential implications for clinical medicine. Annu Rev Med. 2011 18;62:11-24. ### Recent gene finding papers - *Davies G, et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry, 16 (10):996-1005, 2011 - * Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 466(7307): 707-13, 2010 - * Lango Allen H, et al.. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 467(7317):832-8, 2010 - * Scott RA,. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 44(9):991-1005, 2012 ### Vereiste voorkennis General knowledge of human and quantitative genetics. When in doubt, ask the course coordinator. ### Aanbevolen voorkennis General knowledge of human and quantitative genetics. When in doubt, ask the course coordinator. ## Doelgroep Students, phd-students, postdocs who are interested in the theoratical basis of research on the genetic origin of complex features of man. ### Overige informatie There will be 2 guest lectures on actual fields like epegenetics. Furthermore, it is expected from students that they will join a couple of high-level meeting, such as from BBRMI-NL. ## Containment Strategies of Infectious Diseases in Global Context | Vakcode | AM_470127 () | |---------------|---| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.F. van den Bosch | | Docent(en) | dr. D.R. Essink, prof. dr. P.R. Klatser, prof. dr. J.F. van den Bosch | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | #### Doel vak The student - Has acquired in-depth theoretical and practical knowledge in relation to health intervention strategies for infectious diseases. - Has acquired insights in various infectious diseases and characteristics in relation to containment strategies - Has acquired insight into the role of international institutions, such as the WHO, governmental advisory bodies, relevant professionals, executing institutions, NGOs and communities in designing and carrying out health interventions. - Understands which barriers are important when implementing containment strategies of infectious diseases, with a focus on vaccination programmes - Has acquired insight in theoretical concepts and methods to interpret results, evaluations and the effectiveness of programs - Has learned to develop and apply risk assessment, risk management, and risk communication methods - Has learned and practiced interdisciplinary methods and techniques to plan health interventions at community level in an interactive way. ## Inhoud vak This course covers developments in intervention strategies used to address health needs in a global context. Containment strategies of infectious diseases, in particular vaccination programmes, alert systems and intervention strategies, provide specific areas of attention. The containment strategies to be discussed include programmes for known infections (including vaccination strategies and in case of absence of a vaccine, diagnosis and treatment strategies) and emerging infections (including isolation, prevention and communication strategies). The student learns how to analyze bottlenecks and opportunities of the various strategies, how to interpret the results and to evaluate the implementation of programmes. In addition, the student will take part in a group assignment on how to design containment strategies at community level in an interactive way, for e.g. tuberculosis, polio, rabies, malaria, HIV/AIDS, etc. A presentation and writing of an essay will be part of the group assignment. ## Onderwijsvorm Lectures, group assignment, presentation, essay, self-study. Group assignment attendance is compulsory. Contact hours: lectures 34 hrs, group work 8 hrs. Self-study approx. 80 hrs. #### **Toetsvorm** Individual exam (60%) and group assignment presentation and essay (40%). Both parts must at least be sufficient (6 or higher) ### Literatuur R. Webber, 2009. Communicable Disease Epidemiology and Control. 3rd Edition. CAB International, UK and USA. ISBN 978-1-84593-504-7. Lecturers may make further readings available on Blackboard. ## Vereiste voorkennis Basic knowledge about microbiology and immunology. ### Aanbevolen voorkennis Basic knowledge about infectious diseases ## Doelgroep Compulsory course within the Master differentiation International Public Health; optional course for students in other differentiations of the Masters Health Sciences, Biomedical Sciences, and Management, Policy Analysis and Entrepreneurship in Health and Life Sciences. Students from other backgrounds, please contact our secretariat for further information at secretariaat.athena@falw.vu.nl ## Overige informatie Guest lecturers: Dr. Jim van Steenbergen (RIVM/LUMC) Dr. Peter Gondrie (KNCV) Dr. Richard Anthony (Royal Tropical Institute) Dr. Merel Langelaar (Inspectorate Public Health) Prof. dr. Maarten Postma (RUG) Dr. Kitty Maassen (RIVM) Dr. Elena Pinelli (RIVM) Prof. dr. Robert Sauerwein (UMC Nijmegen) Prof. dr. Cees Hamelink (VU) Prof. dr. Ab Osterhaus (EMC Rotterdam) # Disability and Development | Vakcode | AM_470588 () | |---------------|--| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. W.H. van Brakel MD | | Docent(en) | H.B. Miranda Galarza MSc, F.M. Budge MSc | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | - To develop an understanding of disability and the issues faced by people with disabilities - To develop knowledge and skills for disability research, policy development and management related to disability, rehabilitation and development - To acquire insight into the epidemiology of disability, with separate attention for important determinants like gender, poverty and HIV/AIDS - To learn how to use relevant models of disability and the conceptual framework of the International Classification of Functioning, Disability and Health (ICF) - To understand the importance of human rights in relation to disability and to learn to use the UN Convention for the Rights of Persons with Disabilities for advocacy and other rights-based interventions - To acquire skills and knowledge in measurement and research methods relevant to disability - To understand the importance of inter-sectoral collaboration - To gain insight in participatory approaches ## Inhoud vak The Disability and
Development (D&D) course focuses on a broad range of issues related to disability and rehabilitation in the context of development. This means that the focus is on people with disabilities in low and middle-income countries. Disability affects an estimated 1 billion people worldwide, the majority of whom live in low and middle-income countries. The large majority are poor and have no access to rehabilitation services; neither are facilities in place to allow them to be included in the mainstream of society. To date, very few services and programmes are available to address these needs. The realisation that the Millennium Development Goals cannot be met without addressing the needs of people with disability has brought a new impetus to the field of disability and development. Another major recent development was the adoption of the UN Convention on the Rights of Persons with Disabilities in December 2006. It is expected that there will be a substantial increase in demand for training of a large variety of professionals (e.g. researchers, managers, architects, lawyers, health professionals) with formal training and qualifications in the field of disability-inclusive development. This rapidly increasing interest in disability, as a development and human rights issue, means that this emerging field of study will rapidly gain in importance and should become part of any serious higher education programme in social and development studies and in international public health. The course will cover essential knowledge and skills in this subject. The 4-week course programme will include the following subjects: - · Disability models and stereotypes, - Frequencies and distribution of disability, - · Experience of having a disability, - ICF conceptual framework, - Disability rights, including the UN Convention on the Rights of Persons with Disabilities, - Culture and disability, - Determinants of disability, including stigma and discrimination, poverty, gender and HIV/AIDS, - · Measurement of disability, - Disability-relevant research methods, including survey methods, examples of disability research - An introduction to community-based rehabilitation. ## Onderwijsvorm Problem-based learning supported by lectures and an article writing assignment The programme comprises 168 study hours, divided as follows: Lectures: 36Tutorial groups: 18Other events: 12Self-study: 102 ## **Toetsvorm** Participation in tutorial groups: 10% Take-home examination, submitted electronically: 60% Scientific article: 30% #### Literatuur See e-reader ## Vereiste voorkennis Bachelor-level education; any subject ### Doelgroep The Disability & Development module is an optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), International Public Health and Biomedical Sciences; external students from low and middle-income countries are strongly encouraged to apply. We encourage the participation of students with disabilities, especially from low and middle-income countries. ## Overige informatie Jacqueline Kool, MA Lydia la Rivière-Zijdel, MA # Entrepreneurship in Health and Life Sciences | Vakcode | AM_470575 () | |-----------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. E. Masurel | |---------------|------------------------| | Docent(en) | prof. dr. E. Masurel | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | Students obtain knowledge about and insight in the relevance of entrepreneurship and innovation for their own discipline. Students learn about the processes which are involved in the recognition and exploitation of opportunities, about creating economic and social value and about the nature and role of networks. In addition students gain knowledge of different entrepreneurial processes and the importance of valorisation of (bio)medical findings and business ideas for a knowledge-based economy. Learning objectives - Become familiar with an innovation outlook on entrepreneurship. - Become aware that value-adding opportunities not only contain financial aspects but also social and ecological aspects (sustainable entrepreneurship). - Gain the ability to write a feasibility plan on how to bring an innovation to the market. - Obtain knowledge about and insight in the relevance of entrepreneurship and innovation for science disciplines. - Learn about the processes which are involved in the recognition and exploitation of opportunities, about creating economic and social value and about the nature and role of networks. - Gain knowledge of different entrepreneurial processes and the importance of valorisation of (bio)medical findings and business ideas for a knowledge-based economy. ## Inhoud vak This course consists of two tracks: a theoretical track and a practical track. These two tracks run simultaneously. In the first track you learn about entrepreneurship. Answers are found on questions such as: What is entrepreneurship? What defines an entrepreneur? What are entrepreneurial opportunities? What is the role of innovation in entrepreneurship? What is corporate social responsibility (CSR)? How can we judge the feasibility of entrepreneurial ambitions? Simultaneously you work on an assignment (second track). In the first week of this course you search for an innovation in your own discipline (product, service, process etc). Your choice must be approved by the lecturers. The first part of the assignment consists of a description of the innovation which you have chosen. Subsequently, you make a SWOT-analysis and a network analysis of the innovation. Also a paragraph on CSR aspect should be added. The final part of the assignment is your own feasibility study: how would you valorize the innovation to the market? #### Onderwijsvorm Lectures, personal meetings. Each week scientific lectures are given (on entrepreneurship, SWOT-analysis, innovation, CSR etc). These lectures are both the basis for the exam and for the assignment. Each week the student has a short meeting with his / her supervisor, in order to discuss the progress of his/her assignment. Schedule and study time The total study time is 160 hours. Tuition methods include lectures, consultancies and self-study. The different elements have the following study time: - lectures 18 hours - consultancies 8 hours - writing feasibility plan 65 hours - self study 65 hours - examination 4 hours #### **Toetsvorm** You conduct a written exam and an assignment. Both the exam and the assignment determine 50% of the grade. The exam and the assignment must be of sufficient quality. ## Literatuur To be announced on Blackboard ## Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life sciences (MPA), M-differentiation of the Health, Life & Natural Sciences, Biology, Biomedical Sciences. ### Overige informatie Attendance is compulsory. Prior knowledge: Business Management in Health and Life sciences. For information and application: anna.van.luijn@falw.vu.nl ## Ethics in Life Sciences | Vakcode | AM_470707 () | |---------------|--| | Periode | Periode 3 | | Credits | 3.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.T. de Cock Buning | | Docent(en) | prof. dr. J.T. de Cock Buning, dr. J.F.H. Kupper | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 400 | ### Doel vak To provide a toolbox of ethical instruments to analyze properly moral problems related (to one's own) research in the life sciences - To acquire conceptual knowledge of the central concepts in applied philosophy and professional ethics - To challenge an ethical reflection on one owns life science specialization and to open it for an impartial and constructive discussion - To exercise a team based project to enter prepare and execute a moral dialogue - To acquire the necessary skills to handle ethical issues in an accountable manner, as a professional academic beyond one's own inclinations and prejudgments ## Inhoud vak Researchers in life sciences generate the knowledge that builds the future of our society. Therefore, professional academics should be accountable for their decisions, experimental designs and presentation of results. In this short course, the principles of justification will be illustrated with cases of technology ethics and medical ethics. The way an ethical review committee on animal research works, is simulated by a role play exercise on an actual research protocol. Finally, as a small group training project, an ethical dialogue is prepared and executed together with another team. ## Onderwijsvorm Ethics in the Life Sciences is a fulltime course of four weeks (3 ECTS). The total study time is 80 hours. The different elements have the following study time: Lectures: 13 hoursWork groups: 17 hoursGroup assignment: 24 hours • Exam: 2 hour · Presentation: 4 hours Self working (reading in the first week): 20 hours Please note that attendance to the work group meetings is compulsory. Attendance to the lectures is highly recommended. In our experience, relying on self-study alone is insufficient to apply the theory of the lectures in the assignments of the workgroups, and to pass the exam. ## **Toetsvorm** - Degree of intellectual participation in the workgroups (10%) - exam (50%) has to be passed - written and verbal execution of the ethical dialogue (40%) #### Literatuur Available on Blackboard #### Vereiste voorkennis Bsc Biology, Biomedical Sciences, Psychology with profile Biological Psychology or Neuropsychology ## Doelgroep Compulsory course in all FALW Master programmes, except Health Sciences and Neuro Sciences ### Overige informatie Lectures in English, part of the workgroups are in Dutch. All presentations and plenary discussions in English.
Attendance is compulsory. # Experimental and clinical neuroendocrinology | Vakcode | AM_470700 () | |---------------|---| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. C.B. Lambalk | | Docent(en) | dr. J.B. Deijen, B.P.C. Kreukels BSc, dr. J. Rotteveel, dr. C.B. Lambalk, dr. M.M. van Weissenbruch, prof. dr. M.A. Blankenstein, prof. dr. M. den Heijer | | Lesmethode(n) | Hoorcollege, Practicum | | Niveau | 500 | |--------|-----| ### Doel vak The aim of the course is to provide the students not only with a solid basis in the fundamentals of neuroendocrinology, but also with knowledge of recent developments and current research in this field of clinical neurosciences. ### Inhoud vak The course includes an understanding of structure and function of the hypothalamo- pituitary axis in relation to growth, stress, reproduction as well as to autonomic- endocrine and immune- endocrine interactions. Diseases of the hypothalamus and pituitary will be discussed, with special emphasis on central regulation of growth, puberty, reproduction, obesity and stress, sexual orientation and gender identity, taking both an experimental and clinical point of view. A VICI scholar will lecture on the role of pheromones in understanding how males and females respond differently to social odours - possibly the key to understanding the neural basis of sexual orientation and preference. ### Onderwijsvorm Lectures 24 hrs Outpatient clinics 6 hrs Research tutorials 10 hrs (appr) ### **Toetsvorm** Written examination; open questions. ### Literatuur Kandel ER, Schwartz JH, Jessell TM Principles of Neural Science, 2000, 4th edition, McGraw Hill, ISBN 0-07-112000-9. (Ch 49) Selected papers to be handed out during the course. ### Vereiste voorkennis BSc Biology, BSc Medical Biology, BA Biological Psychology, BA Neuropsychology ### Overige informatie For further information, please contact mw. M. Evers (M.Evers@vumc.nl) ## **Functional Brain Imaging** | Vakcode | AM_470715 () | |---------------|---------------------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. P.J.W. Pouwels | | Lesmethode(n) | Computerpracticum, Hoorcollege | | Niveau | 500 | ### Doel vak To learn about the most important brain imaging techniques, the physics principles on which they are based and practical applications in research and patient care. To develop a critical and scientific attitude towards imaging techniques. Final attainment level: - To understand the basic principles and to discuss possibilities and limitations, advantages and disadvantages of brain imaging techniques - To obtain knowledge of use of techniques in neuroscientific and clinical research - To be be able to propose an imaging experiment (acquisition methods and analysis) for a neuroscientific question ### Inhoud vak Three main approaches of brain imaging (to study structure and function) can be distinguished: neurophysiological techniques (EEG, MEG), neuroradiological techniques (MRI, fMRI, MRS) and techniques which involve the use of radio active ligands (SPECT, PET). Quite some emphasis on physics and mathematics will be given during the lectures. This is necessary to provide sufficient background knowledge, such that the students become aware of the advantages and disadvantages, the possibilities and limitations of the techniques. Applications of the techniques will be given in relation to ongoing research at the Neuroscience Campus Amsterdam. ### Onderwijsvorm The basic principles and several applications of all techniques will be presented in a series of lectures mainly scheduled during the first 3 weeks almost full-time. Small groups will discuss particular aspects in more detail. During the course, visits to the departments involved in imaging will be arranged. Hands-on experience of analysis methods is provided in computer practicals. approx. 70 hours of contact time during the whole course. ### **Toetsvorm** Individual written exam (50% of final mark) Team presentation about a functional brain imaging experiment concerning a neurological disorder / neuroscientific problem. (50% of final mark) ### Literatuur - Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009 Mar;10(3):186-98. - Stam CJ: Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int J Psychophysiol. 2010 Sep;77(3):186-94. - Varela F et al: The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001 Apr;2(4):229-39. - Devlin H et al: Introduction to fMRI. http://www.fmrib.ox.ac.uk/education/fmri/fmri/introduction-to-fmri - Matthews PM et al: Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci. 2006 Sep;7(9):732-44. - Lazar M: Mapping brain anatomical connectivity using white matter tractography. NMR Biomed. 2010 Aug;23(7):821-35. - Beaulieu C. The basis of anisotropic water diffusion in the nervous system a technical review. NMR Biomed. 2002 Nov-Dec;15(7-8):435-55 - Blokland JA et al: Positron emission tomography: a technical introduction for clinicians. Eur J Radiol. 2002 Oct;44(1):70-5. - Klunk WE et al: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004 Mar;55(3):306-19. - Lammertsma AA: Radioligand studies: imaging and quantitative analysis. Eur Neuropsychopharmacol. 2002 Dec;12(6):513-6. - Phelps ME: Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000 Aug 1;97 (16):9226-33. - Baillet S et al: Electromagnetic brain mapping. IEEE Signal Processing Magazine 2001 Nov;18(6):14-30. - Hari R, Salmelin R: Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997 Jan;20(1):44-9. - Hillebrand A et al: A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp. 2005 Jun;25(2):199-211. ### Vereiste voorkennis Finished 1st year Master of Neuroscience. Preference for students following 2nd year tracks Master of Neuroscience which contain this course. Students with other background, please first contact coordinator. ### Doelgroep Students attending 2nd year Master of Neuroscience Students with other background, please first contact coordinator. ### Overige informatie There is a maximum number of students – which means that students other than 2nd year Master of Neuroscience should first contact coordinator. Taught in English. For further information, please contact dr. P.J.W. Pouwels (pjw.pouwels@vumc.nl) ### Gene Hunting | Vakcode | AM_470729 () | |---------------|---| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. D. Posthuma | | Docent(en) | dr. Z. Bochdanovits, P. Heutink | | Lesmethode(n) | Hoorcollege, Computerpracticum, Practicum | | Niveau | 500 | ### Doel vak To provide students with a solid base of molecular genetic approaches to identify the responsible genes for human traits and disorders. End terms: - students can run a genome wide association by themselves - students can critically read GWAS studies - students have good insight into moleculr approaches that van be used for functional genetic studies - students are aware of the differences between Mendelian and complex traits and the comsequences for statistical and functional analyses ### Inhoud vak The course will address the various aspects of positional cloning approaches (gene hunting) and functional assays for identified mutations and will address the following topics: - Genome variation - Molecular finemapping (tools and methods) SNPs, STRs - Copy number variation - From statistics to biology - Mutation analysis - Genome browsers - Epigenetics - Biological effects of mutations - Functional assays ### Onderwijsvorm Lectures and discussion (25 hrs), computer practicals (20 hrs), and self study (24-40 hrs) Lecture and computer practicals each represent 50% of the course. ### **Toetsvorm** Weekly reports (30%), presentation (30%) and assignments (40%) #### Literatuur Human Molecular Genetics 4, Strachan and Read + handouts for computer practical ### Vereiste voorkennis Master course Behavior Genetics ### Aanbevolen voorkennis Statistics, genetics ### Doelgroep Master students ### Overige informatie (Minimum # students: 25) ## Genomic Data Analysis | Vakcode | AM_1008 () | |---------------|--| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. P. van Nierop | | Docent(en) | dr. P. van Nierop, dr. Z. Bochdanovits | | Lesmethode(n) | Hoorcollege, Computerpracticum | | Niveau | 500 | ### Doel vak To provide students with basic knowledge and skills to independently design, execute and explain the results of data analysis in the context of a genomics/proteomics experiment. ### FINAL ATTAINMENT LEVELS: (i) Graduated students have acquired the necessary research skills to plan, execute, and reflect on elementary steps in data processing, statistical evaluation, and representation of results of a genomics experiment; - (ii) students have knowledge of the principles behind analysis of protein and DNA sequence information; - (iii) students have basic programming skills in the R programming language ### Inhoud vak The course will address various aspects of bioinformatics analysis of the genome and will address the following topics: - Gene expression analysis: this section of the course deals with stages in data analysis that are associated with
large scale transcriptomics data (microarray experiment). Consecutive stages of data analysis, i.e., experimental design (as far as relevant for data analysis), data preprocessing, normalization, statistical evaluation, and the identification of relevant gene groups, are discussed. At each stage specific characteristics of large scale genomics experiments that impair a straightforward interpretation of results are highlighted and alternative analysis strategies are discussed. The lectures are accompanied by computer practicals where theory is put into practice and the basic practical skills are acquired for genomics data analysis and representation in the R programming language. The theoretical and practical skills are applicable to any 'omics' (genomics, proteomics, metabolomics) experiment. - Analysis of biological sequences: this section of the course teaches the fundamentals of mining of information on DNA and protein sequences relevant for molecular biology research. Special attention is given to the principle of molecular evolution and the translation thereof into algorithms for sequence analysis. Topics of sequence alignment, sequence database searching, and phylogenetic analysis will be discussed, and are accompanied by computer practicals that provide insight into sequence analysis algorithms as well as familiarize students with popular sequence analysis tools such as BLAST and ClustalW. ### Onderwijsvorm Lectures (20 hr), practicals (15 hr) ### **Toetsvorm** Written exam(60%), microarray data analysis assignment (20%), sequence analysis assignment (20%) ### Literatuur Dov Stelkel, Microarray bioinformatics, 2003, Cambridge University Press, ISBN 052152587X David W Mount, Bioinformatics: sequence and genome analysis, 2004, 2nd edition, Cold Spring Harbor Laboratory Press, ISBN 0879697121 (this book may be replaced by a book at a more suitable level; more known Q3 2013) ### Vereiste voorkennis Bachelor Biology, Biomedical Sciences, Psychology with profile Biological Psychology or Neuropsychology, Neurogenomics course. ### Doelgroep The course provides essential body of knowledge and skills to students that pursue a career in Life Sciences at the molecular level (genomics, proteomics, metabolomics). ### Overige informatie For further information, please contact dr. P. van Nierop (p.van.nierop@vu.nl) ### Health Geography | Vakcode | AM_470094 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | drs. M.A. Molendijk | | Docent(en) | prof. dr. H.J. Scholten | | Lesmethode(n) | Hoorcollege, Computerpracticum | | Niveau | 400 | ### Doel vak After the course the student can answer basic questions concerning specific health geography issues, by using geographical data and analysis (GIS) techniques. The student: - has a critical appreciation of spatial perspectives in the geography of health; - has practical experience in the use of GIS software and analysis tools to solve the spatial component health geography issues; - can document and communicate the use of geodata and spatial procedures in written form and using flowcharts and meaningful clear maps. ### Inhoud vak This course covers the spatial dimension of health issues and teaches methodology and use of an essential tool for health geographers: Geographical Information Systems (GIS). Location and time determine the variation in the social and environmental factors that are essential for the spatial development, distribution, treatment and prevention of diseases and health problems. Unsurprising, since the late nineties the use of geodata and GIS has become more and more standard in the different health disciplines that study the aforementioned spatial relationships, such as environmental health and disease ecology. Or as Cromley and MacLafferty (2011) put it: "GIS, as a means of exploring health problems and finding ways to address them, has taken its place in the conceptual and methodological foundations of public health". Next to GIS applications in disease surveillance and risk analysis, GIS is also increasingly used in applications for health access and planning and for community health profiling. To apply geographically based GIS tools and methods to the study of health, disease, and health care, in a sound and responsible way, requires expert knowledge and skills from multiple disciplines. This course offers the necessary basic skills and knowledge concerning the geographic data, tools and methods from the geographic disciplines. Your health studies should offer most of the necessary skills and knowledge from the health related disciplines. This implies that this course will start as a basic GIS course, but with case studies and geodata relevant for your discipline. As the course proceeds the background disciplines will merge more and more together into the discipline of health geography, maintaining however a strong focus on geodata, GIS and spatial analysis. ### Onderwijsvorm Lectures and supervised computer labs. The latter are core of the course. Each week consists of 14 contact hours and 26 self study hours. #### **Toetsvorm** The final mark of this course is composed of two parts: - 1) Exam and Self Assessed Exercises (SAE). The exam and SAE's make up 80% of the end mark. For the exam, the maximum score you can obtain is 8 points; handing in the SAE's (1-8) in time and complete counts for 2 points. - 2) A report reflecting on the practical GIS case study using the PPDAC format (Problem, Plan, Data, Analysis, Conclusion) makes up 20% of the end mark. The exam is held in a computer room and consists of questions that test your practical skills in using (Arc)GIS as well as questions that test your understanding of spatial perspectives in health (course lectures and literature). ### Literatuur - 1) De Smit, J.M, M.F. Goodchild, P.A. Longley, Geospatial Analysis: a comprehensive guide to principles, techniques and software tools. 3rd edition. (spatialanalysisonline.com) - 2) Chapter 3 Representing Geography from: Longley e.a. "Geographical Information System & Science' 2dn edition, Chapter 3.1 3.7 (p. 63 83). - 3) Delaney, J., K. Van Niel (2007), Geographical Information Systems; An Introduction (Second Edition), Oxford University Press. Chapters 1 & 2, p. 1-24 OR a new book (Ellen K. Cromley, Sara L. McLafferty, GIS and Public Health, 2nd edition 2012, The Guilford Press, New York) that is currently under consideration. Decision will be made in November 2013. ### Vereiste voorkennis Proven affinity with Information Technology ### Doelgroep MSc students with basic training in health sciences and/or nutrition. The course is a component of the differentiation programme Infectious diseases and Public Health in the MSc Health Science and of the differentiation programme Infectious diseases in the MSc Biomedical Sciences. ### Overige informatie Guest lectures from Royal Tropical Institute (Mirjam Bakker) and "Health Geography" alumni. ## Health, Globalisation and Human Rights | Vakcode | AM_470818 () | |-------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. C.W.M. Dedding | | Docent(en) | prof. dr. P. Heutink, dr. M.G.B.C. Bertens | |---------------|--| | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak To acquire knowledge and understanding of the relationship between global public health issues and the global protection of human rights To analyse how violations of human rights affect health and well-being To learn methods of human rights assessment in relation to innovations in health technology To acquire insights into the cultural dimensions of human rights values in relation to public health ### Inhoud vak This course focuses on the human rights issues that are raised around the globe in connection with public health concerns. The course introduces the students to the effects of globalization on health issues, to the relevant UN human rights instruments on health and to the mechanisms to promote and protect these rights. Attention is given to a wide range of human rights topics in which health and well being play a crucial role. Examples are situations of armed conflict, reproductive rights, migration and refugee issues and childrens rights. Within the context of current globalisation processes the importance of local cultural insights into the human rights & public health interaction will be discussed. During the course students will prepare and participate in a simulation on a human rights assessment of innovations in health technology and discuss relevant scientific literature in study groups. In the exam students will show their creative problem-solving skills applying them to human rights dilemmas in public health. ### Onderwijsvorm Contact hours Lectures: 33 hours Work groups: 10 hours Group project, simulation and exam: 8 hours Self study and preparing: remaining hours ### **Toetsvorm** Group project (10%), Simulation (20%), exam (70%). All parts need to be passed (6.0) ### Literatuur To be announced at the start of the first work group/lecture ### Doelgroep Optional course for students in all differentiations of the Masters Health Sciences, Biomedical Sciences and Management, Policy Analysis and Entrepreneurship in Health and Life Sciences. ### Overige informatie Guest lectures and guest organisations (under reservation): Christine Dedding (Children and rights) Fiona Budge (Culture and Health) Bert Keizer (Elderly Rights) Els Mons (Rights and disabled persons) Women on Waves Doctors without Borders And more to be announced. For more information contact Anna van Luijn: a.van.luijn@vu.nl ### History of Life Sciences | Vakcode | AM 471017 () | |---------------
--| | Vancouc | 7.101 () | | Periode | Ac. Jaar (september), Periode 3 | | Credits | 3.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. I.H. Stamhuis | | Docent(en) | prof. dr. I.H. Stamhuis, prof. dr. F.H. van Lunteren | | Lesmethode(n) | Hoorcollege, Werkgroep, Werkcollege | ### Doel vak We will address several of the more conspicuous changes in the life sciences during the last two centuries, such as the emergence of modern genetics, the social basis of Darwin's theory of evolution, the "molecularization" of the life sciences, and the rise and fall of the eugenic movement. Three additional themes running through the course are the nature of scientific discovery, the disciplinary organization of science and the interaction between science and society. ### Inhoud vak We will address several of the more conspicuous changes in the life sciences during the last two centuries, such as the emergence of modern genetics, the social basis of Darwin's theory of evolution, the 'molecularization' of the life sciences, the rise and fall of the eugenic movement and the complex relationship between ecology and environmentalism. Three additional themes running through the course are the nature of scientific discovery, the disciplinary organization of science and the interaction between science and society. ### Onderwijsvorm Plenary lectures. Group assignments involving presentations. Course information, course lectures and readings, assignments and instructions will be posted on Blackboard. ### **Toetsvorm** The final grade is the weighted average of the grades of the group presentation (40%) and the individual written exam (60%) with the condition that to pass the exam, the final grade must be at least 6 AND the grades of both parts must be at least 5. ### Literatuur Articles ### Overige informatie N.B. 2012 - 2013 is the last possibility to follow History of Life Sciences. ### Immunity and Disease | Vakcode | AM_1031 () | |---------------|---------------------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. I.M.W. van Hoogstraten | | Docent(en) | dr. I.M.W. van Hoogstraten | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 600 | #### Doel vak - Expanding knowledge obtained during the introductory course on immunology, focusing on several immunological disease processes including infectious disease, immunodeficiency, autoimmunity, graft rejection and hypersensitivity. - Trainings in ways to study primary and secondary immunological literature on selected immune disorders. - Introduction to critical research questions regarding immunological aspects of various diseases. Finally, the student should be able to: - Explain in depth how and to which extent immune defence mechanisms normally operate, and are distributed in cancer and a broad variety of clinically relevant disease processes. - Point out which diagnostic methodologies provide the information, which is most relevant to the selection of therapeutic interventions. - Summarize pros and cons of preventive and therapeutic measures. ### Inhoud vak Parham's 'The Immune System' (3rd ed.), which is also used for the introductory course. After repetition of the fundamentals of chapters 1 to 9, the chapters 10 – 16 focus on infectious diseases, immunodeficiencies, allergies and hypersensitivity disorders, autoimmune diseases, graft rejection, tumor immunology, and therapeutic and technical issues, respectively. Additional course content (literature and lectures on research models) will also be placed on Blackboard. ### Onderwijsvorm Independent study (approx. 120 hrs), complemented with training sessions. First, during the initial lecture knowledge on the first 9 chapters will be refreshed and rehearsed. Subsequently, the chapters 10 -16 of Parham (2nd ed.) and research models in immunity and disease will be lectured and discussed. Moreover, small-scale working group sessions are scheduled to provide highly interactive discussions on recent literature selected in order to highlight cutting edge research questions (2 x 3 hours). ### **Toetsvorm** The course will be closed off with a written assignment based on answering essay questions (at the end of October). The re-exam takes place yearly. ### Literatuur The immune system, Parham, 3rd edition (ISBN 9780815341468). Complementary literature on selected topics will be provided on Blackboard. ### Doelgroep This course is compulsory for the Differentiation Immunology in the General Master Biomedical Sciences FALW. Given the broad relevance of immunology in life sciences this course also provides excellent opportunities as voluntary choice for other differentiations within both FALW master program BMW and other choices in FALW as well as voluntary choice in VUmc master programs (master oncology/master cardiovascular). ### International Comparative Analyses of Health Care Systems | Vakcode | AM_470820 () | |---------------|--| | Periode | Periode 3 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. D.R. Essink | | Docent(en) | prof. dr. J.E.W. Broerse, dr. D.R. Essink, dr. T.J.
Schuitmaker-Warnaar | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak - To understand and recognize the different components of a health system and different models of health system organization using various frameworks for health system analysis - To understand and analyze outcomes of health systems with respect to equity, fair financial contribution and health status - To understand the complex adaptive nature of health systems and its constitution - To understand different methods in analyzing and comparing health systems: health system performance assessment (benchmarking), case study analysis, cost effectiveness analysis - To understand the underlying reasons for health system reform and to recognize different health care reform strategies; - To understand cases study methodology regarding comparison of components of health systems - To apply the acquired knowledge in the context of; - To design, carry out and reflect on a (comparative) analysis of developing, transitional and developed countries, making use of the framework for comparative analysis; - To be able to link the characteristics of policy recommendations, strategies on health system reform and public opinions on certain aspects of care to the specific determinants of the country/region at hand. - To give a well structured and academically solid lecture on the comparison of countries; - To write a clearly structured and academically solid paper on the comparative analysis you have carried out; ### Inhoud vak Given the fact that health systems worldwide are confronted with demographical and epidemiological changes, health systems are currently experiencing a period in which they have to re-assess their set-up, framework and goals. In this course you will obtain an overview of the complex nature of health systems and its different components, both with respect to conceptual components (service delivery, resource creation, stewardship, financing) and content components (primary care, mental health care, etc), and you will acquire skills to analyze and compare these components. In various lectures, both the quantitative aspects, and the critique there-upon, and the qualitative aspects of health system comparison is discussed. Furthermore, you will gain insight in the complexity and culturally determined nature of health system design and health system reform, through a series of lectures form VU-lecturers and experts from a variety of institutions such as the Royal Tropical Institute and the Nivel. Through two assignments, you learn and reflect on the topics that are discussed throughout the course. First, you will critically review a comparative analysis report on a specific aspect of health care in Europe, and present this in a lecture. Second, you will set up your own comparative analysis between two selected countries on a specific health care theme. In this case, you are invited to look critically at your own analysis process. You will report on you findings by means of a report and via a poster presentation. In both assignments you will have regular feedback sessions with health researchers in small groups. ### Onderwijsvorm 'Research methods for needs assessments' is a fulltime course of four weeks (6 ECTS). The total study time is 160 hours. Tuition methods include lectures, training workshops, and self-study. The different elements have the following study time: - lectures 22 hours - assignment sessions 28 hours - (project) self study 108 hours - pass/fail test 2 hours Attendance to the assignment sessions is compulsorily ### **Toetsvorm** Your are assessed on the basis of two comparative case study assignments. Both assignments need to be passed (higher then 5.5). - Assignment 1: 40% - Assignment 2: 60% In addition a brief pass/fail test is given which needs a pass but is not graded, to check lecture attendance. ### Literatuur A selection of literature will be made on the basis of lectures and state of the art research. (selection of last years literature) - Mills, A.J. and Ranson, M.K. (2006). The design of health systems. In Merson, M.H., Black, R.E. and Mills, A.J. (eds.). International public Health: diseases, programs, systems and policies. London: Jones and Bartlett. Methods: Benchmarking - WHO (2000). World Health report 2000: health systems: improving performance. Geneva: WHO. o Message from the director o Chapters 1 and 2 o Statistical Annex - M.M. Harbers, E.A. van der Wilk, P.G.N. Kramers, M.M.A.P. Kuunders, M. Verschuuren and Achterberg. (2010) Dare to compare: Benchmarking the Dutch health
with the European community health indicators. RIVM o Chapters 1, 2, 3 and 10 - GP Westert, MJ, van den Berg, SLN Zwakhals, JD de Jong, H Verkleij (2010). The Dutch healthcare performance report. RIVM o Executive summary o Chapter 1 o Chapter 6 Methods: case study - Yin, R. K. (2009). Case Study Research: Design and Methods. Fourth edition, Sage publications, London o Chapters 1 and 2 ### Health systems - George Shakarishvili, Rifat Atun, Peter Berman, William Hsiao, Craig Burgess, and Mary Ann Lansang (2010). Converging Health Systems Frameworks: Towards A Concepts-to-Actions Roadmap for Health Systems Strengthening in Low and Middle Income Countries. In Global Health Governance - Hsiao (2003). What is a health system and why should we care - Van Kemenade (2007). European Health Systems. Eslevier o Chapter 15 - Plsek and Greenlagh, (2001). The challenge of complexity in healthcare. British Medical Journal, 10, 323:625 - Building the field of health systems and policy research o Framing the questions - o An Agenda for Action - o Social Science Matters - Murray, C.J.L. and Frenk, J. (2008). Health metrics and evaluation: strengthening the science. Lancet, 371(9619), 11911199. ### Aanbevolen voorkennis It is recommended that students have knowledge on public policy in the context of healthcare. ### Doelgroep Compulsory course within the Master specialization International Public Health, optional course within the Master specialization Infectious Diseases (master programme Biomedical Sciences). In any other circumstances admission should be requested from the course coordinator. ### Overige informatie **Guest lecturers:** Prof. dr. Joep Lange dr. Rob Baltussen, health economics at (UMCG) Dr. Michael van den Berg (RIVM) Barend Gerretsen (KIT) Prof. dr. Wienke Boerma (NIVEL) # Internship Biomedical Sciences | Vakcode | AM_471158 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | ## Internship Cardiovascular Diseases | Vakcode | AM_471136 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship Communication Specialisation | Vakcode | AM_471145 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship Educational Specialisation | Vakcode | AM_471143 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | ## Internship Immunology | Vakcode | AM_471137 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship Infectious Diseases | Vakcode | AM_471138 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship International Public Health | Vakcode | AM_471139 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship Med. and Behavioural Genomics | Vakcode | AM_471142 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | # Internship Societal Specialisation | Vakcode | AM_471144 () | |----------|----------------------| | Periode | Ac. Jaar (september) | | Credits | 30.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | |-------------|---------------------------------------| | Coördinator | dr. R.J. van Belle-van den Berg | | Niveau | 600 | ### Literature thesis Biomedical Sciences | Vakcode | AM_471135 () | |-------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 9.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. R.J. van Belle-van den Berg | ### Molecular Infection Biology | Vakcode | AM_470657 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. W. Bitter | | Docent(en) | prof. dr. W. Bitter | | Lesmethode(n) | Hoorcollege, Practicum | | Niveau | 600 | ### Doel vak To understand how the interaction of a pathogen with its host is studied (in vitro studies, use of alternative in vivo models, different approaches of mutant screening) To understand the variation within microbial pathogens and the effect this variation has on host adaptation. To understand what virulence factors are and how they are regulated by the pathogen. To apply the acquired knowledge to interpret scientific literature and scientific hypotheses regarding pathogen-host interactions. ### Inhoud vak The recent explosion in genomic data of both microbes and eukaryotic hosts and the continuous progress in molecular biology allows a detailed analysis of the molecular interactions between a pathogen and its host. This knowledge is necessary because we are continuously exposed to new emerging pathogens and the resurgence of old plagues and need new vaccines and anti-microbial compounds. However, which technique should and could be used for a specific problem and how to interpret conflicting outcomes using different experimental strategies? This course aims to provide a thorough understanding and practical experience of molecular biology as it applies to infectious agents. The course covers the application of molecular biology to studying the basic biology of pathogenic bacteria and viruses (their virulence factors, taxonomy and genetic typing) and the genetic susceptibility of the host to infection. It aims to equip students with the specialised knowledge and skills necessary to assess primary literature on medical microbiology. ### Onderwijsvorm The course has three different parts: lectures, practicum and workshop. In the latter part students will discuss with each other opposing views on controversial topics in medical microbiology that recently appeared in the literature. contact hours: lectures: 18 Literature Workshop: 17 Practicum: 30-40 ### **Toetsvorm** written exam (50% of final mark and should be minimally 5,5) literature discussion (workshop, 30% of final mark) practicum (20% of final mark) ### Literatuur Reader will be available one week before the start of the course. ### Vereiste voorkennis Bachelor's course 'Infectieziekten' and 'Immunologie' or an equivalent course in Microbiology and Molecular Biology with practical skills of handling microorganisms safely ### Doelgroep Students with a keen interest to study the interaction between a pathogen and its host, from a practical as well as a theoretical point of view ### Overige informatie **Guest lectures:** Dr. Peter van der Ley, RIVM Bilthoven, molecular techniques used for vaccine development Dr. Lia van der Hoek, AMC Amsterdam, identification of novel viral pathogens ## Parasitology | Vakcode | AM_470052 () | |---------------|---| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. M. Campos Ponce | | Docent(en) | dr. M. Campos Ponce, dr. C.B. Polman, dr. M.R. van Dijk | | Lesmethode(n) | Hoorcollege, Computerpracticum, Practicum, Werkgroep | | Niveau | 400 | ### Doel vak This course aims to provide students with a wide knowledge and understanding of Medical Parasitology. At the end of the course students: will have learned the principles of medical parasitology and will be able to: - *apply these principles to different parasite groups - *describe parasite life cycles - *identify the role of the host and parasite on the outcome of an infection - *describe (and understand) the effect of parasite infection on other infectious diseases as well as on non-communicable diseases - *describe the advantages and disadvantages of diagnostic techniques as discussed in literature. - *describe the principles for treatment and prevention programmes - *describe the principles for vaccination research - *debate on the pros and cons of the elimination of parasites ### Inhoud vak The course will cover all aspects of medical important parasites: life cycles, virulence factors, (immunological) interaction between parasites and their host(s), diagnosis, epidemiology, control and elimination. ### Onderwijsvorm Lectures will be followed by discussion groups or in- class assignments. In discussion groups students will be expected to demonstrate an indepth understanding of medically important parasites. During the first two weeks students will have (interactive) guest lectures covering all aspects of medical parasitology. During these first two weeks they will also have to present selected articles during two sessions and they will have the opportunity to
observe and identify parasites during the parasite demonstration. The examination will take place in the third week. The final week is devoted to selected parasites that are almost eliminated. Students will pitch selected parasite during an elevator pitch during a call for proposals session. And at the end of the week the students will have to actively participate in a debate on the pros and cons of elimination of selected parasites. Total contact hours: Lectures: 32 hours Workgroups:14 hours Parasite demonstration: 4 hours ### **Toetsvorm** The final grade will be determined on the basis a written examination. Bonus points can be earned on the basis of oral presentations (regular presentations as well as their performance during the elevator pitch and the debate). ### Literatuur Reader ### Vereiste voorkennis Immunology, Infectious disease ### Aanbevolen voorkennis Basic cell biology and basic immunology ### Doelgroep Optional course within the MSc programmes of Health Sciences and Biomedical sciences ### Overige informatie Several guest lectures will be invited to give lectures ### Pathophysiology of Heart and Circulation | Vakcode | M_CPATHO09 (3120014) | |---------------|------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | VUmc | | Coördinator | dr. W.S. Simonides | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 400 | ### Literatuur Book: Cardiology, Crawford-Di Marco-Paulus 3rd Ed.(recommended) syllabus including relevant articles. Book: Pathophysiology of heart disease (Ed L.S. Lilly); syllabus including relevant articles. ### Intekenprocedure Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams. ## Policy, Management and Organisation in International Public Health | Vakcode | AM_470819 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.E.W. Broerse | | Docent(en) | prof. dr. J.E.W. Broerse, M.O. Kok | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak To develop a detailed understanding of the health policy process and its outcomes both at national and international level To acquire insight into the different theoretical concepts on policy design in the field of public health To understand how policy decisions are translated into programs and projects, and subsequently implemented To get acquainted with different management practices in health programs To gain insight into change management To get acquainted with and acquire skills in international diplomacy, resolution writing, negotiation and the procedures of the United Nations ### Inhoud vak This course contains two parts that will run parallel throughout the course: a theoretical part and a practical, diplomacy, part. In the theoretical part you study different theoretical concepts of policy science in international public health. You study core concepts of public administration in relation to IPH such as power relations, securing public interest, public versus private sector, managing change and the network society. Questions are addressed such as: In what way does the political structure of a country influence health policies; Why do certain topics get on the policy agenda while other topics never make it; Why do policy makers and politicians regularly seem to ignore scientific insights; To what extent do international organisations (such as the World Bank and the World Health Organisation) influence national policies? In the diplomacy part you develop basic diplomatic skills by practicing them in 4 training sessions and a final 1.5 day World Health Organization simulation under Model United Nations rules of procedure (WHO MUN). Model United Nations (informally abbreviated as Model UN or MUN) is an academic simulation of the United Nations that aims to educate you about civics, effective communication, globalization and multilateral diplomacy. In Model UN, you take on roles as foreign diplomats and participate in a simulated session of the WHO. ### Onderwijsvorm Lectures (29 hours), training workshops (14 hours) and simulation (12 hours), self study (102,5 hours), and examination (2.5 hours) ### **Toetsvorm** Individual exam (70%) and diplomacy assignment (30%). Both grades need to be at least 5.5 to pass the course. ### Literatuur "Making Health Policy", Kent Buse, Nicholas Mays & Gill Walt, 2005, Open University Press, ISBN 0-335-21839-3 "The Wisdom of Whores", Elizabeth Pisani, 2008, Granta Publications, ISBN 978-1-84708-076-9 Other reading materials via Blackboard ### Doelgroep Compulsory course within the Master specialization International Public Health; optional course for students in other specializations of the Masters Health Sciences and Biomedical Sciences. ### Overige informatie Attendance of training workshops and simulation is compulsory. For further information and application, please contact Anna van Luijn (a.van.luijn@vu.nl) ## Policy, Politics and Participation | Vakcode | AM_470589 () | |---------|--------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | |---------------|--| | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.T. de Cock Buning | | Docent(en) | dr. B.J. Regeer, dr. J.F.H. Kupper, prof. dr. J.E.W. | | | Broerse | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak To further deepen your analytic skills with respect to the assessment of a specific societal problem; To acquire further insight into the practice of interactive research; To acquire further insights into specific methods and techniques of interactive research; To strengthen the skills to design an interactive research project To practice skills in data collection and analysis; To learn to set up valid lines of argumentation; To improve your communication skills; To improve your skills in working effectively in a project team, through team building, team analysis and feedback. ### Inhoud vak In this course you get the chance to gain experience in the practical implementation of methodologies for interactive research. In a four week policy project you will both improve your focus group research skills and deepen your understanding of the relevant theoretical concepts in the areas of policy studies, science and technology studies and democracy theory. In a group of about ten students you will participate in a real interactive research project which is executed at the Athena institute. In this project you will be trained in and practice various skills for data collection (such as focus group design and facilitation) and data analysis (such as qualitative content analysis). Specific attention is paid to your personal interactive research skills. At the end of the course, you prepare a policy report to present your findings. In an oral presentation your team will highlight the main results of your analysis and defend the recommendations you propose. ### Onderwijsvorm Lectures, training workshops, project assignment ### **Toetsvorm** Individual evaluation based on personal performance in the project group and assessment of various group products (report and presentation). All parts need to be passed. ### Literatuur To be announced on Blackboard ### Doelgroep Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences. ### Overige informatie Basic knowledge of (interactive) policy processes, policy analysis and relevant research skills are required. Attendance is compulsory. ### Psychophysiology | Vakcode | AM_470736 () | |---------------|---------------------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | prof. dr. J.C.N. de Geus | | Docent(en) | prof. dr. J.C.N. de Geus | | Lesmethode(n) | Werkgroep, Practicum, Hoorcollege | | Niveau | 400 | ### Doel vak - 1) Insight in the link between emotional state and peripheral nervous system activity and the most recent experimental approaches and research designs in the field of autonomic and cardiovascular psychophysiology. - 2) Practical skills in the measurement of autonomic nervous system and cardiovascular stress-reactivity. ### Inhoud vak In plenary lectures we will outline the organisation of the autonomic nervous system and the cardiovascular system and how their activity is reflected in peripheral physiological signals. The lectures are interspersed with a series of practicals, where the students apply a broad arsenal of instruments and techniques (ElectroCardioGram, ImpedanceCardioGram, Skin-conductance, Respiration, Finger Blood Pressure, Hormones) to record these signals and to extract parameters that can be used to index psychological processes (e.g. mental load, emotion and stress). This will be done in a standardized laboratory setting using the Biopac system as well as in naturalistic open-field settings using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). Amongst others, students will measure (on each other): skinconductance responses to emotion, cardiorespiratory coupling, baroreflex regulation, and sympathetic and parasympathetic reactivity to mental and physical stress. The main principles and strategies for data analysis will be covered in the lectures and applied in the practicals to the self-recorded data-sets. ### Onderwijsvorm In plenary lectures we will outline the organisation of the autonomic nervous system and the
cardiovascular system and how their activity is reflected in peripheral physiological signals. The lectures are interspersed with a series of practicals, where the students apply a broad arsenal of instruments and techniques (ElectroCardioGram, ImpedanceCardioGram, Skin-conductance, Respiration, Finger Blood Pressure, Accelerometry) to record these signals and to extract parameters that can be used to index psychological processes (e.g. mental load, emotion and stress). This will be done in a standardized laboratory setting using the Biopac system as well as in naturalistic open-field settings using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). Amongst others, students will measure (on each other): skin-conductance responses to emotion, cardiorespiratory coupling, baroreflex regulation, and sympathetic and parasympathetic reactivity to mental and physical stress. The main principles and strategies for data analysis will be covered in the lectures and applied in the practicals to the self-recorded data-sets. Number of contact hours: Lectures: 20h practicals & practical preparation: 70h Examination: 2h self-study: 70h ### **Toetsvorm** Written examination (50% of grade) and independent performance of a short experiment (20%) and analysis and presentation of the data collected (30%). ### Literatuur 1) Psychophysiology reader with selected articles ### **AND** 2a) Vander, A., Sherman, J. & Luciano, D. Human physiology, the mechanisms of body function. Boston: WCB-McGraw-Hill: blz 373-463 (Circulation), blz 463-504(Respiration). OR 2b) Stanfield J, Principles of Human Physiology (4th Ed). Pearson Education Inc: chapters 13,14 (Circulation), and 16 (Respiration) AND 3) 6 short practical manuals ### Qualitative and Quantitative Research Methods | Vakcode | AM_470582 () | |---------------|---| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. J.F.H. Kupper | | Docent(en) | dr. H. Wels, dr. B.J. Regeer, dr. J.F.H. Kupper, dr. ir. R. Hoopman | | Lesmethode(n) | Hoorcollege, Werkgroep, Computerpracticum | | Niveau | 400 | ### Doel vak Understanding the differences between beta- and gamma research To acquire insight and understanding of a transdisciplinary research process. This includes knowledge of the character of and need for transdisciplinary approaches, and their advantages and disadvantages To acquire insight into various quantitative and qualitative research methods and their underlying theoretical concepts To understand the relative strengths and weaknesses of the various ### research methods To know how to interpret quantitative and qualitative findings To acquire insight and understanding of the possibilities to integrate quantitative and qualitative research information To be able to make an adequate transdisciplinary research design for the investigation of a specific problem. ### Inhoud vak Contemporary societies increasingly face complex social problems, like climate change, HIV/ AIDS or ethnic and religious diversity. These complex problems involve a variety of social actors: policy-makers, professionals, NGOs, industry, science and of course the public at large. Addressing such complex issues demands a transdisciplinary approach that investigates, analyzes and integrates the positions and knowledge of different actors. This course offers an (advanced) introduction to various research methods used in transdisciplinary research: questionnaires, systematic observations using all the senses, surveys and statistics, semi-structured in-depth interviews, as well as several interactive and participatory methods. These methods are commonly used in transdisciplinary research into complex problem contexts, communication, and opportunities for intervention. Strengths and weaknesses of each research method and technique will be discussed, as well as its possibility to be applied in different societal contexts. Throughout the course, you will apply theoretical knowledge about the various research methodologies in the training of different qualitative and quantitative methods, and in making a research design. In small groups, students are trained in: (1) qualitative research methods such as semi structured interviews and observation techniques, (2) quantitative research methods such as questionnaires, 3) analysis of the data, and (4) writing a transdisciplinary research design. ### Onderwijsvorm Lecture (20h), Training workshops (30h), Self-study (107h), Examiniation (3h). ### **Toetsvorm** Group assignment (50%) and exam (50%). Both parts need to be passed (6). ### Literatuur Announced on blackboard one month before course starts ### Doelgroep Compulsory course in the Master programme Management, Policy Analysis and Entrepreneurship for the Health and Life Sciences (MPA) and compulsory course within the Science communication- and Societal differentiations of Health, Life and Natural Sciences Masters programmes. ### Overige informatie Attendance of training workshops is compulsory. For further information please contact harry.wels@falw.vu.nl. ## Remodelling of the Circulatory System | Vakcode | M_CREMODE09 (3120001) | |---------|-----------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | |---------------|--------------------------| | Faculteit | VUmc | | Coördinator | prof. dr. J.W.M. Niessen | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 400 | ### Inhoud vak This course focuses on the pathophysiological mechanisms of vascular remodelling in pulmonary disease and ischemia. The following topics will be addressed: - pathophysiology of angiogenesis; - vascular and cardiac effects of pulmonary hypertension; - the role of fat tissue in vascular regulation; - the effect of mechanical ventilation on the cardiovascular system. - Basic aspects of atyherisclerosis - Immunology - Therapy in cardiovascular disease The course contains the following practical elements: - 3D-life cell imaging of vascular cells; - journalclub ### Literatuur relevant articles ### Intekenprocedure Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams. ### Overige informatie Contact: j.w.m.niessen@vumc.nl ### Research Methods for Need Assessments | Vakcode | AM_470817 () | |---------------|---| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. B.J. Regeer | | Docent(en) | dr. M.B.M. Zweekhorst, dr. B.J. Regeer, dr. J.F.H. Kupper, dr. ir. R. Hoopman | | Lesmethode(n) | Hoorcollege, Werkgroep, Computerpracticum | | Niveau | 400 | ### Doel vak • The overall goal is to acquire insights, skills and attitudes regarding various quantitative and qualitative research methods used for conducting needs assessment, analysis of health problems, epidemiologic investigation, field surveys to strengthen public health surveillances and understand the relative strengths and weaknesses of the various research methods - To be able to make an adequate research design for the analysis of a specific health problem (theory, concepts and design) - To acquire knowledge and skills in interview techniques, questionnaire design, and observation (data collection) - To acquire insight in ways to involve community members and patients to include their views and jointly decide on the needs and priorities. This includes interactive and participatory methods for transdisciplinary research, such as focus groups, diagramming, mapping and other visualisation techniques (participative data collection) - To know how to interpret quantitative and qualitative findings in the context of international public health (data analysis) ### Inhoud vak This course focuses on the knowledge, skills and attitude needed to design and conduct research in the field of international public health, with a specific focus on needs assessments. Before planning a health intervention, a thorough epidemiological, behavioural and social analysis of quality of life, health problems, health related behaviours, their causes and contributing factors should be conducted. The social context, environmental factors and community capacity should be investigated. To achieve results, it is necessary for health workers to (1) work with other sectors in a so called inter-sectoral approach, and (2) work with the community, since communities have relevant knowledge which increases the quality of the interventions and ownership of the implementation process. In other words, a transdisciplinary approach is required. A variety of qualitative and quantitative methods can be employed. During this course the most essential research methods will be addressed and practiced: questionnaires, surveys and epidemiological statistics, semi-structured in-depth interviews, as well as several interactive and participatory methods, such as focus group discussions, diagramming, mapping and other visualisation techniques. Strengths and weaknesses of each research method and technique will be discussed, as well as the possibility to apply them in resource-poor settings and in different communities. Throughout the course, students will apply the acquired theoretical knowledge by conducting and presenting their own mini-study in small groups. ### Onderwijsvorm 'Research methods for needs assessments' is a fulltime course of four weeks (6 ECTS). The total study time is 160 hours. Tuition methods include lectures, training workshops, and self-study. The different elements have the following study time: - lectures 18.5 hours -
workshops and training 31.5 hours - (project) self study 107 hours - examination 3 hours Attendance to the workshops and training is compulsory ### **Toetsvorm** The course grade is based on the study design and the exam. Both aspects have to be concluded with the grade of 5.5 or higher. Exam: 50% of total grade Study-Design: 50% of total grade ### Literatuur Verschuren, P. and Doorewaards, H. (2010) Designing a research project (2nd edition) Eleven International Publishing, The Hague. Additional literature will be provided on blackboard. ### Vereiste voorkennis Knowledge of epidemiology and SPSS is a prerequisite to gain access to this course. For further information please contact b.j.regeer@vu.nl. ### Doelgroep Compulsory course within the Master specialization International Public Health, optional course within the Master specialization Infectious Diseases (master programme Biomedical Sciences). In any other circumstances admission should be requested from the course coordinator. ### Overige informatie Guest lecturer epidemiology: dr. A. Anderson, Senior Quality Engineer Ortho Clinical Diagnostics, UK ### Science and Communication | | 0 | |---------------|---| | Vakcode | AM_470587 () | | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. B.J. Regeer | | Docent(en) | dr. B.J. Regeer, dr. J.F.H. Kupper, T. de Lange MSc, B.M. | | | Tielemans | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak - Gain theoretical insight in the relationship between science and society, - Gain insight in the role of science communication in this relationship, - Acquire knowledge of different theories and models of science communication, - Acquire knowledge of different strategies, media and activities for science communication, - Learn how to apply theoretical concepts to real-life examples, - Development of practical skills for science communication (e.g. writing, discussing). ### Inhoud vak Science is all around us and shapes our lives in many different ways. From the vaccines you need for travelling abroad, to the technological devices you use on a daily basis. At the same time, society shapes the development of science and technology. Science and society influence each other continuously; they communicate. Students of Science Communication are expected to become experts in understanding and designing interaction between science and society. In order for this interaction to be fruitful and valuable for both science and society, it is important to gain in-depth knowledge about the theoretical basis of the field of science communication and understand communication processes at the core of several interfaces; e.g. the communication between scientists from different disciplines, between different sciences and their stakeholders, and between science and the public. This course provides a broad basis in the field of science communication by addressing the main areas of science communication and by discussing and challenging several core concepts within this field. Students are invited to explore some issues in greater depth and active participation in lectures and workgroups is required. ### Onderwijsvorm Lectures (22 h) Workgroups (18 h) Home-study for group assignments (8 h) Home-study for individual assignments/exam (90h) #### **Toetsvorm** Individual assignments (30%), group assignment (10%), examination (60%). For all parts a pass grade needs to be obtained. ### Literatuur Academic articles. Direct links to articles will be provided on BlackBoard one month before the beginning of the course. ### Doelgroep The course Science and Communication is a compulsory course for students of the Master specialisation Science Communication (Wetenschapscommunicatie) and is a prerequisite for the internship. Science and Communication is an optional course for students from other master programs in the health and life sciences. ### Overige informatie Guest lecturers amongst others: A. van der Plas (TNO) F. van Dam (CSG, Centre for Society and the Life Sciences) ## Science in Dialogue | Vakcode | AM_1002 () | |---------------|---------------------------------------| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. J.F.H. Kupper | | Docent(en) | dr. J.F.H. Kupper | | Lesmethode(n) | Werkgroep, Hoorcollege | | Niveau | 500 | ### Doel vak To gain knowledge and insight into: - the basic concepts and issues in the understanding of sciencesociety interactions, both from a philosophical and communication science perspective - the nature and course of interpersonal and group communication processes relevant to the formal and informal dialogue between science and society - the nature and form of dialogical science communication, aimed at mutual understanding and learning To acquire or improve: - the individual student's skills for effective interpersonal communication - the individual student's skills for the design and facilitation of the science-society dialogue ### Inhoud vak This course examines the public character of scientific controversy and focuses on the communicative aspects of a fruitful science-society dialogue. At the dawn of the 21st century, science, and particularly fields that combine science and engineering such as nanotechnology and synthetic biology, holds a great promise for the progress of our societies. At the same time, these developments are controversial. They lead to a variety of concerns related to risks, benefits and wider moral issues. Nanotechnology creates materials with novel characteristics that help us, but may also contain risks for health and environment. Synthetic biology develops new biological systems that may be very useful, but radically change the nature and meaning of life. Clearly, advances in science do not always match the needs, desires and expectations of society. On the other hand, parts of society might not always appreciate the nature and scope of scientific findings. For a fruitful relationship between science and society, a constructive science-society dialogue is necessary. This course offers advanced lectures on the basic concepts and issues of dialogical science communication: communication, learning, dialogue, understanding, controversy, democracy. A series of workshops and small group assignments presents communicative tools and spaces such as discussion games, science theatre and multimedia platforms that can be used to design and facilitate science-society interactions. Training workshops will focus on improving the students' individual communication and facilitation skills. The students' individual learning curve as a science communicator and facilitator is monitored by means of a personal development plan. The course is completed with an individual essay assignment about the sense and nonsense of the science-society dialogue. ### Onderwijsvorm Lectures (14h), Workgroups (28h), Training workshops (24h), Selfstudy, (82h), Dialogue presentations (12h) ### **Toetsvorm** Group assignment (50%), Take home exam (30%), Mini portfolio (20%) ### Literatuur Is announced on blackboard one month before start of the course ### Doelgroep Optional course in the MSc specialization Science Communication ### Overige informatie Independence and a cooperative attitude is expected. Attendance to training workshops is indispensable. ### Science Journalism | Vakcode | AM_471014 () | |---------------|--| | Periode | Periode 2 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. J.F.H. Kupper | | Docent(en) | dr. J.F.H. Kupper, W.J. Breukers MSc, dr. M.J.W. Bos | | Lesmethode(n) | Hoorcollege, Werkgroep, Computerpracticum | | Niveau | 500 | ### Doel vak To acquire knowledge and insight into: - the popularization of natural scientific knowledge and the use of different media - the criteria for effective science journalism with respect to diverse media - the role of science journalists in the debate about knowledge in society To acquire skills in: - writing popular scientific texts for different genres such as news, background and interview - designing science communication for different media such as newspaper, radio and internet Orientation to the professional practice of science journalism ### Inhoud vak This course teaches the basic principles of science journalism. A series of interactive lectures reviews both the practical as well as the theoretical aspects of science journalism. Topics that are discussed are the translation of science to a language that is both compelling and understandable, the role of journalism in the interaction between science and society, images of science in the media and the ethics of science journalism. The interactive lectures invite you to take your own defendable position with regard to these issues. Guest lectures provide insight into the professional practice of science journalists. The guest speakers work as freelancer, editor or producer at diverse science media, such as newspapers (NRC, Volkskrant), magazines (NWT), internet (Noorderlicht) and radio (Labyrint). Finally, the course trains specific skills that you need as a science journalist, such as popular writing, interviewing, conceptual analysis and program design. ### Onderwijsvorm Lectures and seminars on theory and practice of science journalism and writing skill training (36h). Considerable time is set aside for performing science journalism in assignments (108h). The assignments are assessed by lecturers and fellow students (peer-review process). Self study (16h). ### **Toetsvorm** Individual exam (20%), Individual Assignments (50%, Small Group Assignments (30%) ### Literatuur Announced on Blackboard one month before start of the course ### Doelgroep
All Master students with a Beta-Bachelor degree. Students taking this course as part of their C-differentiation within FALW or FEW will have precedence over other students. Students from other faculties and or universities need to get formal consent from the course co-ordinator (Frank Kupper) before enrolment. ### Overige informatie Course is taught in Dutch. More information: f.kupper@vu.nl. ### Science Museology | Vakcode | AM_470590 () | |---------------|---| | Periode | Periode 3 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. B.J. Regeer | | Docent(en) | dr. B.J. Regeer, drs. ir. M.G. van der Meij, T. de Lange
MSc | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 500 | ### Doel vak - Gain insight in the role of museum exhibits in the field of science communication. - Apply theoretical notions of science communication and science education, to conduct science communication research in museum settings. - Apply qualitative and quantitative research methods to design, conduct, and report on a research project in museum settings. - Apply theoretical notions of science communication, science education and exhibit design to advise on adjustments and/or development of exhibitions. ### Inhoud vak This course is about the role of science museums/centers, zoos and natural history museums in science communication. You will get familiar with theories of science communication and informal science education in museum setting, and will be introduced to different educational methods as well as styles of communication, different approaches to exhibit design & development, and different methods of research and evaluation of exhibitions. Guest speakers give insight into their profession (1) as science communicators in museums and science centers, (2) as researchers in the field of museology, and/or (3) as professionals in developing informal science & technology learning programs. Through several assignments you are encouraged to combine theory and practice, working step-by-step towards (part of) an exhibition (re-) design. The assignments come from museums and science centers, such as NEMO, Museon, Naturalis, Delft Science Centre, and Artis. ### Onderwijsvorm Lectures (14 h) Workgroups (40 h) Home-study for group assignments (64 h) Home-study for individual assignments (32 h) ### **Toetsvorm** Group assignment (40%), presentations (poster and oral) (10%), and exams (take-home and written) (50%). For all the assignment, presentations and all exams a pass-grade must be obtained. ### Literatuur Academic articles. Direct links to articles will be provided on Blackboard one month before the beginning of the course. ### Vereiste voorkennis Bachelor in any of the Beta Sciences ### Doelgroep Optional course in the C-differentiations (Science Communication) of most of the two-year master programs of the FALW and FEW faculties. Master students from other universities in any scientific field are welcome as well. ### Overige informatie **Guest lecturers:** E. Hamstra (Northernlight) C. Vermeulen (Artis) M. van der Meer (Delft Science Centre) I. van Zeeland (Naturalis) And possibly additional guest lecturers from NEMO, Boijmans van Beuningen, Museon, Van Gogh Museum, etc. ## Scientific Writing in English | Vakcode | AM_471023 () | |---------------|---------------------------------------| | Periode | Ac. Jaar (september) | | Credits | 3.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | M. van den Hoorn | | Lesmethode(n) | Werkgroep | | Niveau | 400 | ### Doel vak The aim of this course is to provide Master's students with the essential linguistic know-how for writing a scientific article in English that is well organized idiomatically and stylistically appropriate and grammatically correct. At the end of the course students - know how to structure a scientific article: - know what the information elements are in parts of their scientific article; - know how to produce clear and well-structured texts on complex subjects; - know how to cite sources effectively; - know how to write well-structured and coherent paragraphs; - know how to construct effective sentences; - know what collocations are and how to use them appropriately; - know how to adopt the right style (formal style, cohesive style, conciseness, hedging) - know how to avoid the pitfalls of English grammar; - know how to use punctuation marks correctly; - know what their own strengths and weaknesses are in writing; - know how to give effective peer feedback. Final texts may contain occasional spelling, grammatical or word choice errors, but these will not distract from the general effectiveness of the text. ### Inhoud vak The course will start with a general introduction to scientific writing in English. Taking a top-down approach, we will then analyse the structure of a scientific article in more detail. As we examine each section of an article, we will peel back the layers and discover how paragraphs are structured, what tools are available to ensure coherence within and among paragraphs, how to write effective and grammatically correct sentences and how to choose words carefully and use them effectively. Topics addressed during the course include the following: - Structuring a scientific article - Considering reading strategies: who is your readership? How do they read your text? What do they expect? How does that affect your writing? - Writing well-structured and coherent paragraphs - Composing effective sentences (sophisticated word order, information distribution). - Arguing convincingly avoiding logical fallacies - Academic tone and style: hedging why, how, where? - Using the passive effectively - Understanding grammar (tenses, word order, etc.) - Understanding punctuation - Referring to sources: summarising, paraphrasing, quoting (how and when?) - Avoiding plagiarism - Vocabulary development: using appropriate vocabulary and collocations ### Onderwijsvorm Scientific Writing in English is an eight-week course and consists of 4 contact hours during the first week and 2 contact hours a week for the rest of the course. Students are required to spend at least 6 to 8 hours of homework per week. They will work through a phased series of exercises that conclude with the requirement to write several text parts (Introduction, Methods or Results section, Discussion and Abstract). Feedback on the writing assignments is given by the course teacher and by peers. ### **Toetsvorm** Students will receive the three course credits when they meet the following requirements: - Students hand in three writing assignments (Introduction, Methods or Results, Discussion) and get a pass mark for all writing assignments; - Students provide elaborate peer feedback; - Students attend all sessions: - Students are well prepared for each session (i.e. do all homework ### assignments); - Students actively participate in class; - Students do not plagiarise or self-plagiarise. #### Literatuur Effective Scientific Writing: An Advanced Learner's guide to Better English (A. Bolt & W. Bruins, ISBN 978 90 8659 6171). VU bookstore: €27.95. ### Doelgroep This course is only open to students of the Master's programmes of the Faculty of Earth and Life Sciences mentioned below. These students are only eligible to the course if they have already conducted scientific research (e.g. for their Bachelor's thesis) or if they will be working on a research project when taking Scientific Writing in English. Faculty of Earth and Life Sciences - Master's programmes: - Biology; - Health Sciences; - Ecology; - Biomolecular Sciences; - Biomedical Sciences; - Neurosciences; - Global Health; - Management, Policy Analysis and Entrepreneurship in Health and Life Sciences. ### Overige informatie - To do well, students are expected to attend all lessons. Group schedules are to be found at rooster.vu.nl and on Blackboard. - A VUnet registration for this course is necessary in order to enroll or be enrolled in a Blackboard group. The VUnet registration automatically gives access to the corresponding Blackboard site. - Group enrollment only takes place via Blackboard. For open/general groups: students have to enroll themselves following FALW programmes containing this course. For group assigned to specific studies, students are enrolled by the course coordinator). - Make sure Scientific Writing in English does not overlap with another course. - If you have registered for a group in Blackboard, you are expected to attend all sessions (eight). If you decide to withdraw from the course, do so in time, both on Blackboard and in VUnet. This all will avoid a 'fail' on your grade list for not taking part in this course and allows other students to fill in a possible very wanted group spot. - If you (expect to) miss a session, please inform the group trainer as soon as possible. If you miss a session without notification, you may not be able to finish the course. - For any questions concerning this course, please contact the course coordinator Marieke Zantkuijl: m.c.l.zantkuijl@vu.nl ## Statistical Genetics for Gene Finding | Vakcode | AM_470734 () | |----------|--------------| | Credits | 5.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | |---------------|---------------------------------------| | Coördinator | dr. J.J. Hottenga | | Docent(en) | dr. J.J. Hottenga | | Lesmethode(n) | Hoorcollege, Computerpracticum | | Niveau | 500 | ### Doel vak Provide practical skills for genetic linkage and association studies ### Inhoud vak The first part of the course will focus on parametric and non-parametric linkage analysis in pedigrees, with special emphasis on mendelian inheritance of complex phenotypes. The second part of the course will concentrate on genome-wide association studies (GWAS). With the advent of SNP microarray-chips that can
map the largest part of the common genetic variance, GWAS have been playing a significant role in the field of genetics for the last couple of years. With higher resolution than the classical linkage studies, GWAS have been able to uncover many variants with small effects on complex traits. Besides teaching the main theoretical concepts underlying GWAS and linkage analysis, this course also includes the hands on training needed to handle the large amounts of data and statistical tests. In the practical you will prepare your data, run GWAS and linkage analyses, learn how to visualize and interpret the output and distinguish real signal from noise. The practicals include the use of Merlin, PLINK, haploview, WGA-viewer, Galaxy, SPSS. ### Onderwijsvorm Lectures, practical hands-on computer training ### **Toetsvorm** Weekly assignments (25%) & exam (75%). Practicals need to be completed in order to obtain a final grade. ### Literatuur To be announced on Blackboard ### Vereiste voorkennis Behavioral Genetics (AM_470732) & Complex Trait Genetics (AM_470733) ## Statistical Genetics for Gene Finding | Vakcode | AM_1040 () | |---------------|---------------------------------------| | Periode | Periode 1 | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | Fac. der Aard- en Levenswetenschappen | | Coördinator | dr. J.J. Hottenga | | Docent(en) | dr. J.J. Hottenga | | Lesmethode(n) | Hoorcollege, Computerpracticum | | Niveau | 500 | #### Doel vak Provide practical skills for genetic linkage and association studies #### Inhoud vak The first part of the course will focus on parametric - and nonparametric linkage analysis in pedigrees, with special emphasis on Mendelian inheritance of complex phenotypes and the possible ways to analyze these data. In current and future genetics, linkage analysis remains an essential tool to analyse pedigrees for research as well as clinical genetics. The knowledge required is essential for any geneticist. The second part of the course will concentrate on genome-wide association studies (GWAS). With the advent of SNP microarray-chips that can map an essential part of the common genetic variance, GWAS have been playing a significant role in the field of genetics for the last couple of years. With higher resolution than the classical linkage studies, GWAS have been able to uncover many variants with small effects on complex traits. Besides teaching the main theoretical concepts underlying GWAS and linkage analysis, this course also includes the hands on training needed to handle the large amounts of data and statistical tests. In the practical you will prepare your data, run GWAS and linkage analyses, learn how to visualize and interpret the output and distinguish real signal from noise. The practicals include the use of Merlin, Qtdt, Plink, haploview, WGA-viewer, Galaxy, SPSS. ### Onderwijsvorm Lectures, practical hands-on computer training. Note that the lectures will be essential to answer most of the examined knowledge. Contact hours: 4x2 hours lecture + 4x4 hours practicals. First two weeks: Linkage Second two weeks: GWAS ### Literatuur Statistical Genetics: Gene Mapping Through Linkage and Association. Neale BM, Ferreira MAR, Medland SE, & Posthuma D (Eds.) Taylor and Francis, London (2007). (ISBN 9780415410403) Abecasis GR, Cardon LR and Cookson WO. A General Test of Association for Quantitative Traits in Nuclear Families. Am J Hum Genet (2000) 66:279-292. Abecasis GR, Cherny SS, Cookson WO and Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet (2002) 30:97-101. Fulker DW, Cherny SS, Sham PC, Hewitt JK. Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet. 1999 Jan;64(1):259-67. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81. David J. Balding. A tutorial on statistical methods for population association studies. Nature Reviews Genetics. (2006) 7:781-791 Thomas A. Pearson; Teri A. Manolio. How to Interpret a Genome-wide Association Study. JAMA. 2008;299(11):1335-1344 Joel N.Hirschhorn and Mark J.Daly. Genome-Wide Association Studies for Common Diseases and Complex Traits. Nature Reviews Genetics. (2005) 6:95-108. Treva K. Rice, Nicholas J. Schork, and D. C. Rao. Methods for Handling Multiple Testing. Advances in Genetics, Vol. 60, chapter 12. Robert Plomin, Claire M. A. Haworth and Oliver S. P. Davis. Common disorders are quantitative traits. Nature Reviews Genetics, published online 27 october 2009. John P. A. Ioannidis, Gilles Thomas and Mark J. Daly. Validating, augmenting and refining genome-wide association signals. (2009). Nature Reviews Genetics. 10:318-329. Peter M. Visscher, Matthew A. Brown, Mark I. McCarthy, and Jian Yang. Five Years of GWAS Discovery. The American Journal of Human Genetics 90, 7–24, January 13, 2012 Additional literature involving recent techniques will be announced on Blackboard two weeks in advance of the course. ### Vereiste voorkennis Behavioral Genetics (AM_470732) & Complex Trait Genetics (AM_470733) & Basic Statistics. ### Aanbevolen voorkennis Variance components analysis, regression analysis. ### Doelgroep Any person interested in analyzing human DNA in relation to heritable (complex) traits: e.g., geneticists, molecular biologists. ### Overige informatie Additional useful information can be obtain from the following website links: http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml http://www.sph.umich.edu/csg/abecasis/Merlin/index.html http://www.sph.umich.edu/csg/abecasis/qtdt/index.html ### Vascular Function and Metabolic Diseases | Vakcode | M_CVASCFU09 (3120002) | |---------------|------------------------| | Periode | Ac. Jaar (september) | | Credits | 6.0 | | Voertaal | Engels | | Faculteit | VUmc | | Coördinator | dr. E.H. Serné | | Lesmethode(n) | Hoorcollege, Werkgroep | | Niveau | 400 | #### Doel vak This course focuses on the fundamental role of inflammation, diabetes and hyperhomocysteinemia in vascular disease. Pathophysiology, new diagnostics and development of new therapies will be presented. #### Inhoud vak The following topics will be addressed: diabetes and vascular disease; diabetes and cardiac disease; hyperhomocysteinemia and vascular disease; inflammation and vascular disease: the role of sepsis; diagnostics of vascular complications; endovascular surgery as a new therapy in vascular disease. The course contains the following practical elements: in vivo assessment of vascular function in humans; flow- cytometry of inflammatory cells / mediators; isolation and culture of endothelial cells; protein analysis & proteomics in vascular disease. #### **Toetsvorm** Written exam and assignments #### Literatuur Book: to be announced; syllabus including relevant articles. ### Intekenprocedure Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams. ### Viral Oncogenesis | Vakcode | M_OVIRONC03 (311168) | |---------------|---------------------------| | Periode | Periode 4 | | Credits | 3.0 | | Voertaal | Engels | | Faculteit | VUmc | | Coördinator | prof. dr. J.M. Middeldorp | | Lesmethode(n) | Hoorcollege | | Niveau | 500 | ### Doel vak The aim of the course is to give students an up-to-date insight into the mechanism of viral oncogenesis in humans. ### Inhoud vak The subjects of the course may include several of the following issues: General aspects of DNA and RNA tumour viruses Human papillomavirus (HPV) and cervical cancer Hepatitis B/C viruses (HBV/HCV) and hepatocellular carcinoma Human papillomavirus (HPV) and non-melanoma skin cancer Epstein Barr virus (EBV) in lymphoma and carcinoma Human Herpes Virus 8 (HHV8) and Kaposi's sarcoma ### Onderwijsvorm 6-12 contact hours. In addition the course consists of independent learning on the basis of a literature study on selected topics. Introduction session with basic lectures will be provided by the teachers. Question time with the teachers to decide in consultation. ### **Toetsvorm** The course will be concluded by group presentations on literature studies (3 hours). Moreover, findings on literature studies should be summarized in a short written summary to be delivered at the end of the course. ### Literatuur Literature consists of recent (review) papers in the field of viral oncogenesis. ### Doelgroep This course is optional for students of the Master Course in Oncology who have completed three compulsory courses of the Master Course in Oncology. ### Intekenprocedure Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams. ### Overige informatie After the course the students will have thorough knowledge and in depth insight into: the fundamental processes which play a role in viral oncogenesis the mechanisms of the various oncogenic viruses the translation of fundamental research into clinical applications Apply per email to the coordinator of the Master's Programme in Oncology.